ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph drawing addresses the problem of finding a layout of a graph that satisfies given aesthetic and understandability objectives. The most important objective in graph drawing is minimization of the number of crossings in the drawing, as the aesthe tics and readability of graph drawings depend on the number of edge crossings. VLSI layouts with fewer crossings are more easily realizable and consequently cheaper. A straight-line drawing of a planar graph G of n vertices is a drawing of G such that each edge is drawn as a straight-line segment without edge crossings. However, a problem with current graph layout methods which are capable of producing satisfactory results for a wide range of graphs is that they often put an extremely high demand on computational resources. This paper introduces a new layout method, which nicely draws internally convex of planar graph that consumes only little computational resources and does not need any heavy duty preprocessing. Here, we use two methods: The first is self organizing map known from unsupervised neural networks which is known as (SOM) and the second method is Inverse Self Organized Map (ISOM).
The randomness and uniqueness of human eye patterns is a major breakthrough in the search for quicker, easier and highly reliable forms of automatic human identification. It is being used extensively in security solutions. This includes access contro l to physical facilities, security systems and information databases, Suspect tracking, surveillance and intrusion detection and by various Intelligence agencies through out the world. We use the advantage of human eye uniqueness to identify people and approve its validity as a biometric. . Eye detection involves first extracting the eye from a digital face image, and then encoding the unique patterns of the eye in such a way that they can be compared with pre-registered eye patterns. The eye detection system consists of an automatic segmentation system that is based on the wavelet transform, and then the Wavelet analysis is used as a pre-processor for a back propagation neural network with conjugate gradient learning. The inputs to the neural network are the wavelet maxima neighborhood coefficients of face images at a particular scale. The output of the neural network is the classification of the input into an eye or non-eye region. An accuracy of 90% is observed for identifying test images under different conditions included in training stage.
Thresholding is an important task in image processing. It is a main tool in pattern recognition, image segmentation, edge detection and scene analysis. In this paper, we present a new thresholding technique based on two-dimensional Tsallis entropy. T he two-dimensional Tsallis entropy was obtained from the twodimensional histogram which was determined by using the gray value of the pixels and the local average gray value of the pixels, the work it was applied a generalized entropy formalism that represents a recent development in statistical mechanics. The effectiveness of the proposed method is demonstrated by using examples from the real-world and synthetic images. The performance evaluation of the proposed technique in terms of the quality of the thresholded images are presented. Experimental results demonstrate that the proposed method achieve better result than the Shannon method.
Edge detection is an important field in image processing. Edges characterize object boundaries and are therefore useful for segmentation, registration, feature extraction, and identification of objects in a scene. In this paper, an approach utilizing an improvement of Baljit and Amar method which uses Shannon entropy other than the evaluation of derivatives of the image in detecting edges in gray level images has been proposed. The proposed method can reduce the CPU time required for the edge detection process and the quality of the edge detector of the output images is robust. A standard test images, the real-world and synthetic images are used to compare the results of the proposed edge detector with the Baljit and Amar edge detector method. In order to validate the results, the run time of the proposed method and the pervious method are presented. It has been observed that the proposed edge detector works effectively for different gray scale digital images. The performance evaluation of the proposed technique in terms of the measured CPU time and the quality of edge detector method are presented. Experimental results demonstrate that the proposed method achieve better result than the relevant classic method.
Edge detection is one of the most critical tasks in automatic image analysis. There exists no universal edge detection method which works well under all conditions. This paper shows the new approach based on the one of the most efficient techniques f or edge detection, which is entropy-based thresholding. The main advantages of the proposed method are its robustness and its flexibility. We present experimental results for this method, and compare results of the algorithm against several leading edge detection methods, such as Canny, LOG, and Sobel. Experimental results demonstrate that the proposed method achieves better result than some classic methods and the quality of the edge detector of the output images is robust and decrease the computation time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا