ترغب بنشر مسار تعليمي؟ اضغط هنا

57 - Miwa Goto 2014
We have obtained improved spectra of key fundamental band lines of H3+, R(1,1)l, R(3,3)l, and R(2,2)l, and ro-vibrational transitions of CO on sightlines toward the luminous infrared sources GCIRS 3 and GCIRS 1W, each located in the Central Cluster o f the Galactic center within several arcseconds of Sgr A*. The spectra reveal absorption occurring in three kinds of gaseous environments: (1) cold dense and diffuse gas associated with foreground spiral/lateral arms; (2) warm and diffuse gas absorbing over a wide and mostly negative velocity range, which appears to fill a significant fraction of the Galaxys Central Molecular Zone (CMZ); and (3) warm, dense and compact clouds with velocities near +50 km s^-1 probably within 1-2 pc of the center. The absorptions by the first two cloud types are nearly identical for all the sources in the Central Cluster, and are similar to those previously observed on sightlines from Sgr A* to 30 pc east of it. Cloud type (3), which has only been observed toward the Central Cluster, shows distinct differences between the sightlines to GCIRS 3 and GCIRS 1W, which are separated on the sky by only 0.33 pc in projection. We identify this material as part of an inward extension of the Circumnuclear Disk previously known from HCN mapping. Lower limits on the products of the hydrogen ionization rate zeta and the path length L are 2.3 x 10^5 cm s^-1 and 1.5 x 10^3 cm s^-1 for the warm and diffuse CMZ gas and for the warm and dense clouds in the core, respectively. The limits indicate that the ionization rates in these regions are well above 10^-15 s^-1.
334 - Miwa Goto 2013
We would like to understand the chemistry of dense clouds and their hot cores more quantitatively by obtaining more complete knowledge of the chemical species present in them. We have obtained high-resolution infrared absorption spectroscopy at 3-4 u m toward the bright infrared source CRL 2136. The fundamental vibration-rotation band of HCl has been detected within a dense cloud for the first time. The HCl is probably located in the warm compact circumstellar envelope or disk of CRL 2136. The fractional abundance of HCl is (4.9-8.7)e-8, indicating that approximately 20 % of the elemental chlorine is in gaseous HCl. The kinetic temperature of the absorbing gas is 250 K, half the value determined from infrared spectroscopy of 13CO and water. The percentage of chlorine in HCl is approximately that expected for gas at this temperature. The reason for the difference in temperatures between the various molecular species is unknown.
We present new measurements of the diameter of o Cet (Mira) as a function of wavelength in the 2.2 micron atmospheric window using the adaptive optics system and the infrared camera and spectrograph mounted on the Subaru Telescope. We found that the angular size of the star at the wavelengths of CO and H2O absorption lines were up to twice as large as the continuum photosphere. This size difference is attributable to the optically thick CO and H2O molecular layers surrounding the photosphere. This measurement is the first direct differential spectroscopic imaging of stellar extension that resolves individual molecular lines with high spectral-resolution observations. This observation technique is extremely sensitive to differences in spatial profiles at different wavelengths; we show that a difference in diameter much smaller than the point spread function can be measured.
147 - Miwa Goto 2008
Infrared absorption lines of H3+, including the metastable R(3,3)l line, have been observed toward eight bright infrared sources associated with hot and massive stars located in and between the Galactic Center Cluster and the Quintuplet Cluster 30 pc to the east. The absorption lines with high velocity dispersion arise in the Galaxys Central Molecular Zone (CMZ) as well as in foreground spiral arms. The temperature and density of the gas in the CMZ, as determined from the relative strengths of the H3+ lines, are T=200-300K and n=50-200cm^-3. The detection of high column densities of H3+ toward all eight stars implies that this warm and diffuse gaseous environment is widespread in the CMZ. The products of the ionization rate and path length for these sight lines are 1000 and 10 times higher than in dense and diffuse clouds in the Galactic disk, respectively, indicating that the ionization rate, zeta, is not less than 10^-15 s^-1 and that L is at least on the order of 50 pc. The warm and diffuse gas is an important component of the CMZ, in addition to the three previously known gaseous environments: (1) cold molecular clouds observed by radio emission of CO and other molecules, (2) hot (T=10^4-10^6K) and highly ionized diffuse gas (n_e=10-100cm^-3) seen in radio recombination lines, far infrared atomic lines, and radio-wave scattering, and (3) ultra-hot (T=10^7-10^8K) X-ray emitting plasma. Its prevalence significantly changes the understanding of the environment of the CMZ. The sight line toward GC IRS 3 is unique in showing an additional H3+ absorption component, which is interpreted as due to either a cloud associated with circumnuclear disk or the 50 km s^-1 cloud known from radio observations. An infrared pumping scheme is examined as a mechanism to populate the (3,3) metastable level in this cloud.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا