ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are ne w gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a mass gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics - which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription - to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion--anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Ecalles resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا