ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet the y interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.
It is shown here that a cloud of charged particles could in principle absorb energy from gravitational waves (GWs) incident upon it, resulting in wave attenuation. This could in turn have implications for the interpretation of future data from early universe GWs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا