ترغب بنشر مسار تعليمي؟ اضغط هنا

115 - Hao Liu , Minshuo Chen , Tuo Zhao 2021
Most of existing statistical theories on deep neural networks have sample complexities cursed by the data dimension and therefore cannot well explain the empirical success of deep learning on high-dimensional data. To bridge this gap, we propose to e xploit low-dimensional geometric structures of the real world data sets. We establish theoretical guarantees of convolutional residual networks (ConvResNet) in terms of function approximation and statistical estimation for binary classification. Specifically, given the data lying on a $d$-dimensional manifold isometrically embedded in $mathbb{R}^D$, we prove that if the network architecture is properly chosen, ConvResNets can (1) approximate Besov functions on manifolds with arbitrary accuracy, and (2) learn a classifier by minimizing the empirical logistic risk, which gives an excess risk in the order of $n^{-frac{s}{2s+2(svee d)}}$, where $s$ is a smoothness parameter. This implies that the sample complexity depends on the intrinsic dimension $d$, instead of the data dimension $D$. Our results demonstrate that ConvResNets are adaptive to low-dimensional structures of data sets.
The Lottery Ticket Hypothesis suggests that an over-parametrized network consists of ``lottery tickets, and training a certain collection of them (i.e., a subnetwork) can match the performance of the full model. In this paper, we study such a collect ion of tickets, which is referred to as ``winning tickets, in extremely over-parametrized models, e.g., pre-trained language models. We observe that at certain compression ratios, the generalization performance of the winning tickets can not only match but also exceed that of the full model. In particular, we observe a phase transition phenomenon: As the compression ratio increases, generalization performance of the winning tickets first improves then deteriorates after a certain threshold. We refer to the tickets on the threshold as ``super tickets. We further show that the phase transition is task and model dependent -- as the model size becomes larger and the training data set becomes smaller, the transition becomes more pronounced. Our experiments on the GLUE benchmark show that the super tickets improve single task fine-tuning by $0.9$ points on BERT-base and $1.0$ points on BERT-large, in terms of task-average score. We also demonstrate that adaptively sharing the super tickets across tasks benefits multi-task learning.
Causal inference explores the causation between actions and the consequent rewards on a covariate set. Recently deep learning has achieved a remarkable performance in causal inference, but existing statistical theories cannot well explain such an emp irical success, especially when the covariates are high-dimensional. Most theoretical results in causal inference are asymptotic, suffer from the curse of dimensionality, and only work for the finite-action scenario. To bridge such a gap between theory and practice, this paper studies doubly robust off-policy learning by deep neural networks. When the covariates lie on a low-dimensional manifold, we prove nonasymptotic regret bounds, which converge at a fast rate depending on the intrinsic dimension of the manifold. Our results cover both the finite- and continuous-action scenarios. Our theory shows that deep neural networks are adaptive to the low-dimensional geometric structures of the covariates, and partially explains the success of deep learning for causal inference.
231 - Yu Bai , Minshuo Chen , Pan Zhou 2020
Meta-learning aims to perform fast adaptation on a new task through learning a prior from multiple existing tasks. A common practice in meta-learning is to perform a train-validation split (emph{train-val method}) where the prior adapts to the task o n one split of the data, and the resulting predictor is evaluated on another split. Despite its prevalence, the importance of the train-validation split is not well understood either in theory or in practice, particularly in comparison to the more direct emph{train-train method}, which uses all the per-task data for both training and evaluation. We provide a detailed theoretical study on whether and when the train-validation split is helpful in the linear centroid meta-learning problem. In the agnostic case, we show that the expected loss of the train-val method is minimized at the optimal prior for meta testing, and this is not the case for the train-train method in general without structural assumptions on the data. In contrast, in the realizable case where the data are generated from linear models, we show that both the train-val and train-train losses are minimized at the optimal prior in expectation. Further, perhaps surprisingly, our main result shows that the train-train method achieves a emph{strictly better} excess loss in this realizable case, even when the regularization parameter and split ratio are optimally tuned for both methods. Our results highlight that sample splitting may not always be preferable, especially when the data is realizable by the model. We validate our theories by experimentally showing that the train-train method can indeed outperform the train-val method, on both simulations and real meta-learning tasks.
Deep neural networks can empirically perform efficient hierarchical learning, in which the layers learn useful representations of the data. However, how they make use of the intermediate representations are not explained by recent theories that relat e them to shallow learners such as kernels. In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks and can be advantageous over raw inputs. We consider a fixed, randomly initialized neural network as a representation function fed into another trainable network. When the trainable network is the quadratic Taylor model of a wide two-layer network, we show that neural representation can achieve improved sample complexities compared with the raw input: For learning a low-rank degree-$p$ polynomial ($p geq 4$) in $d$ dimension, neural representation requires only $tilde{O}(d^{lceil p/2 rceil})$ samples, while the best-known sample complexity upper bound for the raw input is $tilde{O}(d^{p-1})$. We contrast our result with a lower bound showing that neural representations do not improve over the raw input (in the infinite width limit), when the trainable network is instead a neural tangent kernel. Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
The top-k operation, i.e., finding the k largest or smallest elements from a collection of scores, is an important model component, which is widely used in information retrieval, machine learning, and data mining. However, if the top-k operation is i mplemented in an algorithmic way, e.g., using bubble algorithm, the resulting model cannot be trained in an end-to-end way using prevalent gradient descent algorithms. This is because these implementations typically involve swapping indices, whose gradient cannot be computed. Moreover, the corresponding mapping from the input scores to the indicator vector of whether this element belongs to the top-k set is essentially discontinuous. To address the issue, we propose a smoothed approximation, namely the SOFT (Scalable Optimal transport-based diFferenTiable) top-k operator. Specifically, our SOFT top-k operator approximates the output of the top-k operation as the solution of an Entropic Optimal Transport (EOT) problem. The gradient of the SOFT operator can then be efficiently approximated based on the optimality conditions of EOT problem. We apply the proposed operator to the k-nearest neighbors and beam search algorithms, and demonstrate improved performance.
Generative Adversarial Networks (GANs) have achieved great success in unsupervised learning. Despite the remarkable empirical performance, there are limited theoretical understandings on the statistical properties of GANs. This paper provides statist ical guarantees of GANs for the estimation of data distributions which have densities in a H{o}lder space. Our main result shows that, if the generator and discriminator network architectures are properly chosen (universally for all distributions with H{o}lder densities), GANs are consistent estimators of the data distributions under strong discrepancy metrics, such as the Wasserstein distance. To our best knowledge, this is the first statistical theory of GANs for H{o}lder densities. In comparison with existing works, our theory requires minimum assumptions on data distributions. Our generator and discriminator networks utilize general weight matrices and the non-invertible ReLU activation function, while many existing works only apply to invertible weight matrices and invertible activation functions. In our analysis, we decompose the error into a statistical error and an approximation error by a new oracle inequality, which may be of independent interest.
Generative Adversarial Imitation Learning (GAIL) is a powerful and practical approach for learning sequential decision-making policies. Different from Reinforcement Learning (RL), GAIL takes advantage of demonstration data by experts (e.g., human), a nd learns both the policy and reward function of the unknown environment. Despite the significant empirical progresses, the theory behind GAIL is still largely unknown. The major difficulty comes from the underlying temporal dependency of the demonstration data and the minimax computational formulation of GAIL without convex-concave structure. To bridge such a gap between theory and practice, this paper investigates the theoretical properties of GAIL. Specifically, we show: (1) For GAIL with general reward parameterization, the generalization can be guaranteed as long as the class of the reward functions is properly controlled; (2) For GAIL, where the reward is parameterized as a reproducing kernel function, GAIL can be efficiently solved by stochastic first order optimization algorithms, which attain sublinear convergence to a stationary solution. To the best of our knowledge, these are the first results on statistical and computational guarantees of imitation learning with reward/policy function approximation. Numerical experiments are provided to support our analysis.
Recurrent Neural Networks (RNNs) have been widely applied to sequential data analysis. Due to their complicated modeling structures, however, the theory behind is still largely missing. To connect theory and practice, we study the generalization prop erties of vanilla RNNs as well as their variants, including Minimal Gated Unit (MGU), Long Short Term Memory (LSTM), and Convolutional (Conv) RNNs. Specifically, our theory is established under the PAC-Learning framework. The generalization bound is presented in terms of the spectral norms of the weight matrices and the total number of parameters. We also establish refined generalization bounds with additional norm assumptions, and draw a comparison among these bounds. We remark: (1) Our generalization bound for vanilla RNNs is significantly tighter than the best of existing results; (2) We are not aware of any other generalization bounds for MGU, LSTM, and Conv RNNs in the exiting literature; (3) We demonstrate the advantages of these variants in generalization.
Residual Network (ResNet) is undoubtedly a milestone in deep learning. ResNet is equipped with shortcut connections between layers, and exhibits efficient training using simple first order algorithms. Despite of the great empirical success, the reaso n behind is far from being well understood. In this paper, we study a two-layer non-overlapping convolutional ResNet. Training such a network requires solving a non-convex optimization problem with a spurious local optimum. We show, however, that gradient descent combined with proper normalization, avoids being trapped by the spurious local optimum, and converges to a global optimum in polynomial time, when the weight of the first layer is initialized at 0, and that of the second layer is initialized arbitrarily in a ball. Numerical experiments are provided to support our theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا