ترغب بنشر مسار تعليمي؟ اضغط هنا

We study proximity-induced superconductivity in gold nanowires as a function of the length of the nanowire, magnetic field, and excitation current. Short nanowires exhibit a sharp superconducting transition, whereas long nanowires show nonzero resist ance. At intermediate lengths, however, we observe two sharp transitions; the normal and superconducting regions are separated by what we call the mini-gap phase. Additionally, we detect periodic oscillations in the differential magnetoresistance. We provide a theoretical model for the mini-gap phase as well as the periodic oscillations in terms of the coexistence of proximity-induced superconductivity with a normal region near the center of the wire, created either by temperature or application of a magnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا