ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state, in order to plan and to generalize better out-of-distribution. The agents architecture uses a set representation and a b ottleneck mechanism, forcing the number of entities to which the agent attends at each planning step to be small. In experiments with customized MiniGrid environments with different dynamics, we observe that the design allows agents to learn to plan effectively, by attending to the relevant objects, leading to better out-of-distribution generalization.
The core operation of current Graph Neural Networks (GNNs) is the aggregation enabled by the graph Laplacian or message passing, which filters the neighborhood node information. Though effective for various tasks, in this paper, we show that they are potentially a problematic factor underlying all GNN methods for learning on certain datasets, as they force the node representations similar, making the nodes gradually lose their identity and become indistinguishable. Hence, we augment the aggregation operations with their dual, i.e. diversification operators that make the node more distinct and preserve the identity. Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations. In practice, the proposed two-channel filters can be easily patched on existing GNN methods with diverse training strategies, including spectral and spatial (message passing) methods. In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
The performance limit of Graph Convolutional Networks (GCNs) and the fact that we cannot stack more of them to increase the performance, which we usually do for other deep learning paradigms, are pervasively thought to be caused by the limitations of the GCN layers, including insufficient expressive power, etc. However, if so, for a fixed architecture, it would be unlikely to lower the training difficulty and to improve performance by changing only the training procedure, which we show in this paper not only possible but possible in several ways. This paper first identify the training difficulty of GCNs from the perspective of graph signal energy loss. More specifically, we find that the loss of energy in the backward pass during training nullifies the learning of the layers closer to the input. Then, we propose several methodologies to mitigate the training problem by slightly modifying the GCN operator, from the energy perspective. After empirical validation, we confirm that these changes of operator lead to significant decrease in the training difficulties and notable performance boost, without changing the composition of parameters. With these, we conclude that the root cause of the problem is more likely the training difficulty than the others.
96 - Mingde Zhao 2020
Temporal-Difference (TD) learning is a standard and very successful reinforcement learning approach, at the core of both algorithms that learn the value of a given policy, as well as algorithms which learn how to improve policies. TD-learning with el igibility traces provides a way to do temporal credit assignment, i.e. decide which portion of a reward should be assigned to predecessor states that occurred at different previous times, controlled by a parameter $lambda$. However, tuning this parameter can be time-consuming, and not tuning it can lead to inefficient learning. To improve the sample efficiency of TD-learning, we propose a meta-learning method for adjusting the eligibility trace parameter, in a state-dependent manner. The adaptation is achieved with the help of auxiliary learners that learn distributional information about the update targets online, incurring roughly the same computational complexity per step as the usual value learner. Our approach can be used both in on-policy and off-policy learning. We prove that, under some assumptions, the proposed method improves the overall quality of the update targets, by minimizing the overall target error. This method can be viewed as a plugin which can also be used to assist prediction with function approximation by meta-learning feature (observation)-based $lambda$ online, or even in the control case to assist policy improvement. Our empirical evaluation demonstrates significant performance improvements, as well as improved robustness of the proposed algorithm to learning rate variation.
Recently, neural network based approaches have achieved significant improvement for solving large, complex, graph-structured problems. However, their bottlenecks still need to be addressed, and the advantages of multi-scale information and deep archi tectures have not been sufficiently exploited. In this paper, we theoretically analyze how existing Graph Convolutional Networks (GCNs) have limited expressive power due to the constraint of the activation functions and their architectures. We generalize spectral graph convolution and deep GCN in block Krylov subspace forms and devise two architectures, both with the potential to be scaled deeper but each making use of the multi-scale information in different ways. We further show that the equivalence of these two architectures can be established under certain conditions. On several node classification tasks, with or without the help of validation, the two new architectures achieve better performance compared to many state-of-the-art methods.
Temporal-Difference (TD) learning is a standard and very successful reinforcement learning approach, at the core of both algorithms that learn the value of a given policy, as well as algorithms which learn how to improve policies. TD-learning with el igibility traces provides a way to boost sample efficiency by temporal credit assignment, i.e. deciding which portion of a reward should be assigned to predecessor states that occurred at different previous times, controlled by a parameter $lambda$. However, tuning this parameter can be time-consuming, and not tuning it can lead to inefficient learning. For better sample efficiency of TD-learning, we propose a meta-learning method for adjusting the eligibility trace parameter, in a state-dependent manner. The adaptation is achieved with the help of auxiliary learners that learn distributional information about the update targets online, incurring roughly the same computational complexity per step as the usual value learner. Our approach can be used both in on-policy and off-policy learning. We prove that, under some assumptions, the proposed method improves the overall quality of the update targets, by minimizing the overall target error. This method can be viewed as a plugin to assist prediction with function approximation by meta-learning feature (observation)-based $lambda$ online, or even in the control case to assist policy improvement. Our empirical evaluation demonstrates significant performance improvements, as well as improved robustness of the proposed algorithm to learning rate variation.
The infeasible parts of the objective space in difficult many-objective optimization problems cause trouble for evolutionary algorithms. This paper proposes a reference vector based algorithm which uses two interacting engines to adapt the reference vectors and to evolve the population towards the true Pareto Front (PF) s.t. the reference vectors are always evenly distributed within the current PF to provide appropriate guidance for selection. The current PF is tracked by maintaining an archive of undominated individuals, and adaptation of reference vectors is conducted with the help of another archive that contains layers of reference vectors corresponding to different density. Experimental results show the expected characteristics and competitive performance of the proposed algorithm TEEA.
146 - Mingde Zhao , Hongwei Ge , Yi Lian 2018
The generalization abilities of heuristic optimizers may deteriorate with the increment of the search space dimensionality. To achieve generalized performance across Large Scale Blackbox Optimization (LSBO) tasks, it ispossible to ensemble several he uristics and devise a meta-heuristic to control their initiation. This paper first proposes a methodology of transforming LSBO problems into online decision processes to maximize efficiency of resource utilization. Then, using the perspective of multi-armed bandits with non-stationary reward distributions, we propose a meta-heuristic based on Temporal Estimation of Rewards (TER) to address such decision process. TER uses a window for temporal credit assignment and Boltzmann exploration to balance the exploration-exploitation tradeoff. The prior-free TER generalizes across LSBO tasks with flexibility for different types of limited computational resources (e.g. time, money, etc.) and is easy to be adapted to new tasks for its simplicity and easy interface for heuristic articulation. Tests on the benchmarks validate the problem formulation and suggest significant effectiveness: when TER is articulated with three heuristics, competitive performance is reported across different sets of benchmark problems with search dimensions up to 10000.
Researches have shown difficulties in obtaining proximity while maintaining diversity for many-objective optimization problems. Complexities of the true Pareto front pose challenges for the reference vector-based algorithms for their insufficient ada ptability to the diverse characteristics with no priori. This paper proposes a many-objective optimization algorithm with two interacting processes: cascade clustering and reference point incremental learning (CLIA). In the population selection process based on cascade clustering (CC), using the reference vectors provided by the process based on incremental learning, the nondominated and the dominated individuals are clustered and sorted with different manners in a cascade style and are selected by round-robin for better proximity and diversity. In the reference vector adaptation process based on reference point incremental learning, using the feedbacks from the process based on CC, proper distribution of reference points is gradually obtained by incremental learning. Experimental studies on several benchmark problems show that CLIA is competitive compared with the state-of-the-art algorithms and has impressive efficiency and versatility using only the interactions between the two processes without incurring extra evaluations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا