ترغب بنشر مسار تعليمي؟ اضغط هنا

A mesoscopic hydrodynamic model to simulate synthetic self-propelled Janus particles which is thermophoretically or diffusiophoretically driven is here developed. We first propose a model for a passive colloidal sphere which reproduces the correct ro tational dynamics together with strong phoretic effect. This colloid solution model employs a multiparticle collision dynamics description of the solvent, and combines potential interactions with the solvent, with stick boundary conditions. Asymmetric and specific colloidal surface is introduced to produce the properties of self-phoretic Janus particles. A comparative study of Janus and microdimer phoretic swimmers is performed in terms of their swimming velocities and induced flow behavior. Self-phoretic microdimers display long range hydrodynamic interactions and can be characterized as pullers or pushers. In contrast, Janus particles are characterized by short range hydrodynamic interactions and behave as neutral swimmers. Our model nicely mimics those recent experimental realization of the self-phoretic Janus particles.
The solid-solid coexistence of a polydisperse hard sphere system is studied by using the Monte Carlo simulation. The results show that for large enough polydispersity the solid-solid coexistence state is more stable than the single-phase solid. The t wo coexisting solids have different composition distributions but the same crystal structure. Moreover, there is evidence that the solid-solid transition terminates in a critical point as in the case of the fluid-fluid transition.
A new Monte Carlo approach is proposed to investigate the fluid-solid phase transition of the polydisperse system. By using the extended ensemble, a reversible path was constructed to link the monodisperse and corresponding polydisperse system. Once the fluid-solid coexistence point of the monodisperse system is known, the fluid-solid coexistence point of the polydisperse system can be obtained from the simulation. The validity of the method is checked by the simulation of the fluid-solid phase transition of a size-polydisperse hard sphere colloid. The results are in agreement with the previous studies.
117 - Mingcheng Yang , Hongru Ma 2008
By extending the nonequilibrium potential refinement algorithm and lattice switch method to the semigrand ensemble, the semigrand potentials of the fcc and hcp structures of polydisperse hard-sphere crystals are calculated with the bias sampling sche me. The result shows that the fcc structure is more stable than the hcp structure for polydisperse hard-sphere crystals below the terminal polydispersity.
We propose a simple Monte Carlo method to calculate the interfacial free energy between the substrate and the material. Using this method we investigate the interfacial free energys of the hard sphere fluid and solid phases near a smooth hard wall. A ccording to the obtained interfacial free energys of the coexisting fluid and solid phases and the Young equation we are able to determine the contact angle with high accuracy, cos$theta$ = 1:010(31), which indicates that a smooth hard wall can be wetted completely by the hard sphere crystal at the interface between the wall and the hard sphere fluid.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا