ترغب بنشر مسار تعليمي؟ اضغط هنا

Pooling is a simple but essential layer in modern deep CNN architectures for feature aggregation and extraction. Typical CNN design focuses on the conv layers and activation functions, while leaving the pooling layers with fewer options. We introduce the Learning Discrete Wavelet Pooling (LDW-Pooling) that can be applied universally to replace standard pooling operations to better extract features with improved accuracy and efficiency. Motivated from the wavelet theory, we adopt the low-pass (L) and high-pass (H) filters horizontally and vertically for pooling on a 2D feature map. Feature signals are decomposed into four (LL, LH, HL, HH) subbands to retain features better and avoid information dropping. The wavelet transform ensures features after pooling can be fully preserved and recovered. We next adopt an energy-based attention learning to fine-select crucial and representative features. LDW-Pooling is effective and efficient when compared with other state-of-the-art pooling techniques such as WaveletPooling and LiftPooling. Extensive experimental validation shows that LDW-Pooling can be applied to a wide range of standard CNN architectures and consistently outperform standard (max, mean, mixed, and stochastic) pooling operations.
Differentiable Architecture Search (DARTS) is an effective continuous relaxation-based network architecture search (NAS) method with low search cost. It has attracted significant attentions in Auto-ML research and becomes one of the most useful parad igms in NAS. Although DARTS can produce superior efficiency over traditional NAS approaches with better control of complex parameters, oftentimes it suffers from stabilization issues in producing deteriorating architectures when discretizing the continuous architecture. We observed considerable loss of validity causing dramatic decline in performance at this final discretization step of DARTS. To address this issue, we propose a Mean-Shift based DARTS (MS-DARTS) to improve stability based on sampling and perturbation. Our approach can improve bot the stability and accuracy of DARTS, by smoothing the loss landscape and sampling architecture parameters within a suitable bandwidth. We investigate the convergence of our mean-shift approach, together with the effects of bandwidth selection that affects stability and accuracy. Evaluations performed on CIFAR-10, CIFAR-100, and ImageNet show that MS-DARTS archives higher performance over other state-of-the-art NAS methods with reduced search cost.
We propose the Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN) for fast and accurate single-shot object detection. Feature Pyramid (FP) is widely used in recent visual detection, however the top-down pathway of FP cannot preserve accura te localization due to pooling shifting. The advantage of FP is weaken as deeper backbones with more layers are used. To address this issue, we propose a new parallel FP structure with bi-directional (top-down and bottom-up) fusion and associated improvements to retain high-quality features for accurate localization. Our method is particularly suitable for detecting small objects. We provide the following design improvements: (1) A parallel bifusion FP structure with a Bottom-up Fusion Module (BFM) to detect both small and large objects at once with high accuracy. (2) A COncatenation and RE-organization (CORE) module provides a bottom-up pathway for feature fusion, which leads to the bi-directional fusion FP that can recover lost information from lower-layer feature maps. (3) The CORE feature is further purified to retain richer contextual information. Such purification is performed with CORE in a few iterations in both top-down and bottom-up pathways. (4) The adding of a residual design to CORE leads to a new Re-CORE module that enables easy training and integration with a wide range of (deeper or lighter) backbones. The proposed network achieves state-of-the-art performance on UAVDT17 and MS COCO datasets.
We present a novel methodology of augmenting the scattering data measured by small angle neutron scattering via an emerging deep convolutional neural network (CNN) that is widely used in artificial intelligence (AI). Data collection time is reduced b y increasing the size of binning of the detector pixels at the sacrifice of resolution. High-resolution scattering data is then reconstructed by using AI deep super-resolution learning method. This technique can not only improve the productivity of neutron scattering instruments by speeding up the experimental workflow but also enable capturing kinetic changes and transient phenomenon of materials that are currently inaccessible by existing neutron scattering techniques.
Recent works succeeded to generate adversarial perturbations on the entire image or the object of interests to corrupt CNN based object detectors. In this paper, we focus on exploring the vulnerability of the Single Shot Module (SSM) commonly used in recent object detectors, by adding small perturbations to patches in the background outside the object. The SSM is referred to the Region Proposal Network used in a two-stage object detector or the single-stage object detector itself. The SSM is typically a fully convolutional neural network which generates output in a single forward pass. Due to the excessive convolutions used in SSM, the actual receptive field is larger than the object itself. As such, we propose a novel method to corrupt object detectors by generating imperceptible patches only in the background. Our method can find a few background patches for perturbation, which can effectively decrease true positives and dramatically increase false positives. Efficacy is demonstrated on 5 two-stage object detectors and 8 single-stage object detectors on the MS COCO 2014 dataset. Results indicate that perturbations with small distortions outside the bounding box of object region can still severely damage the detection performance.
Adversarial noises are useful tools to probe the weakness of deep learning based computer vision algorithms. In this paper, we describe a robust adversarial perturbation (R-AP) method to attack deep proposal-based object detectors and instance segmen tation algorithms. Our method focuses on attacking the common component in these algorithms, namely Region Proposal Network (RPN), to universally degrade their performance in a black-box fashion. To do so, we design a loss function that combines a label loss and a novel shape loss, and optimize it with respect to image using a gradient based iterative algorithm. Evaluations are performed on the MS COCO 2014 dataset for the adversarial attacking of 6 state-of-the-art object detectors and 2 instance segmentation algorithms. Experimental results demonstrate the efficacy of the proposed method.
Human pose estimation is an important topic in computer vision with many applications including gesture and activity recognition. However, pose estimation from image is challenging due to appearance variations, occlusions, clutter background, and com plex activities. To alleviate these problems, we develop a robust pose estimation method based on the recent deep conv-deconv modules with two improvements: (1) multi-scale supervision of body keypoints, and (2) a global regression to improve structural consistency of keypoints. We refine keypoint detection heatmaps using layer-wise multi-scale supervision to better capture local contexts. Pose inference via keypoint association is optimized globally using a regression network at the end. Our method can effectively disambiguate keypoint matches in close proximity including the mismatch of left-right body parts, and better infer occluded parts. Experimental results show that our method achieves competitive performance among state-of-the-art methods on the MPII and FLIC datasets.
We develop a robust multi-scale structure-aware neural network for human pose estimation. This method improves the recent deep conv-deconv hourglass models with four key improvements: (1) multi-scale supervision to strengthen contextual feature learn ing in matching body keypoints by combining feature heatmaps across scales, (2) multi-scale regression network at the end to globally optimize the structural matching of the multi-scale features, (3) structure-aware loss used in the intermediate supervision and at the regression to improve the matching of keypoints and respective neighbors to infer a higher-order matching configurations, and (4) a keypoint masking training scheme that can effectively fine-tune our network to robustly localize occluded keypoints via adjacent matches. Our method can effectively improve state-of-the-art pose estimation methods that suffer from difficulties in scale varieties, occlusions, and complex multi-person scenarios. This multi-scale supervision tightly integrates with the regression network to effectively (i) localize keypoints using the ensemble of multi-scale features, and (ii) infer global pose configuration by maximizing structural consistencies across multiple keypoints and scales. The keypoint masking training enhances these advantages to focus learning on hard occlusion samples. Our method achieves the leading position in the MPII challenge leaderboard among the state-of-the-art methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا