ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kibble-Zurek mechanism (KZM) is generalized to a class of multi-level systems and applied to study the quenching dynamics of one-dimensional (1D) topological superconductors (TS) with open ends. Unlike the periodic boundary condition, the open bo undary condition, that is crucial for the zero-mode Majorana states localized at the boundaries, requires to consider many coupled levels. which is ultimately related to the zero-mode Majorana modes. Our generalized KZM predictions agree well with the numerically exact results for the 1D TS.
55 - Minchul Lee 2008
We investigate the Josephson effect through a molecular quantum dot magnet connected to superconducting leads. The molecule contains a magnetic atom, whose spin is assumed to be isotropic. It is coupled to the electron spin on the dot via exchange co upling. Using the numerical renormalization group method we calculate the Andreev levels and the supercurrent and examine intertwined effect of the exchange coupling, Kondo correlation, and superconductivity on the current. Exchange coupling typically suppresses the Kondo correlation so that the system undergoes a phase transition from 0 to $pi$ state as the modulus of exchange coupling increases. Antiferromagnetic coupling is found to drive exotic transitions: the reentrance to the $pi$ state for a small superconducting gap and the restoration of 0 state for large antiferromagnetic exchange coupling. We suggest that the asymmetric dependence of supercurrent on the exchange coupling could be used as to detect its sign in experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا