ترغب بنشر مسار تعليمي؟ اضغط هنا

Training quantum neural networks (QNNs) using gradient-based or gradient-free classical optimisation approaches is severely impacted by the presence of barren plateaus in the cost landscapes. In this paper, we devise a framework for leveraging quantu m optimisation algorithms to find optimal parameters of QNNs for certain tasks. To achieve this, we coherently encode the cost function of QNNs onto relative phases of a superposition state in the Hilbert space of the network parameters. The parameters are tuned with an iterative quantum optimisation structure using adaptively selected Hamiltonians. The quantum mechanism of this framework exploits hidden structure in the QNN optimisation problem and hence is expected to provide beyond-Grover speed up, mitigating the barren plateau issue.
We solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access channels with an arbitrary number of senders. As an example, we consider the bosonic thermal-loss multiple-access channel and solve the one-shot capacity reg ion enabled by an entanglement source composed of sender-receiver pairwise two-mode squeezed vacuum states. The EA capacity region is strictly larger than the capacity region without entanglement-assistance. With two-mode squeezed vacuum states as the source and phase modulation as the encoding, we also design practical receiver protocols to realize the entanglement advantages. Four practical receiver designs, based on optical parametric amplifiers, are given and analyzed. In the parameter region of a large noise background, the receivers can enable a simultaneous rate advantage of 82.0% for each sender. Due to teleportation and superdense coding, our results for EA classical communication can be directly extended to EA quantum communication at half of the rates. Our work provides a unique and practical network communication scenario where entanglement can be beneficial.
Quantum Neural Networks (QNNs) have been recently proposed as generalizations of classical neural networks to achieve the quantum speed-up. Despite the potential to outperform classical models, serious bottlenecks exist for training QNNs; namely, QNN s with random structures have poor trainability due to the vanishing gradient with rate exponential to the input qubit number. The vanishing gradient could seriously influence the applications of large-size QNNs. In this work, we provide a viable solution with theoretical guarantees. Specifically, we prove that QNNs with tree tensor and step controlled architectures have gradients that vanish at most polynomially with the qubit number. We numerically demonstrate QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme, which remains largely unknown due to the non-convex optimization landscape, the measurement error, and the unavoidable gate err ors introduced by noisy intermediate-scale quantum (NISQ) machines. Our contributions in this paper are multi-fold. First, we derive the utility bounds of QNN towards empirical risk minimization, and show that large gate noise, few quantum measurements, and deep circuit depth will lead to the poor utility bounds. This result also applies to the variational quantum circuits with gradient-based classical optimization, and can be of independent interest. We then prove that QNN can be treated as a differentially private (DP) model. Thirdly, we show that if a concept class can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise. This result implies the same learnability of QNN whether it is implemented on noiseless or noisy quantum machines. We last exhibit that the quantum statistical query (QSQ) model can be effectively simulated by noisy QNN. Since the QSQ model can tackle certain tasks with runtime speedup, our result suggests that the modified QNN implemented on NISQ devices will retain the quantum advantage. Numerical simulations support the theoretical results.
Differentially private (DP) learning, which aims to accurately extract patterns from the given dataset without exposing individual information, is an important subfield in machine learning and has been extensively explored. However, quantum algorithm s that could preserve privacy, while outperform their classical counterparts, are still lacking. The difficulty arises from the distinct priorities in DP and quantum machine learning, i.e., the former concerns a low utility bound while the latter pursues a low runtime cost. These varied goals request that the proposed quantum DP algorithm should achieve the runtime speedup over the best known classical results while preserving the optimal utility bound. The Lasso estimator is broadly employed to tackle the high dimensional sparse linear regression tasks. The main contribution of this paper is devising a quantum DP Lasso estimator to earn the runtime speedup with the privacy preservation, i.e., the runtime complexity is $tilde{O}(N^{3/2}sqrt{d})$ with a nearly optimal utility bound $tilde{O}(1/N^{2/3})$, where $N$ is the sample size and $d$ is the data dimension with $Nll d$. Since the optimal classical (private) Lasso takes $Omega(N+d)$ runtime, our proposal achieves quantum speedups when $N<O(d^{1/3})$. There are two key components in our algorithm. First, we extend the Frank-Wolfe algorithm from the classical Lasso to the quantum scenario, {where the proposed quantum non-private Lasso achieves a quadratic runtime speedup over the optimal classical Lasso.} Second, we develop an adaptive privacy mechanism to ensure the privacy guarantee of the non-private Lasso. Our proposal opens an avenue to design various learning tasks with both the proven runtime speedups and the privacy preservation.
We consider state redistribution of a hybrid information source that has both classical and quantum components. The sender transmits classical and quantum information at the same time to the receiver, in the presence of classical and quantum side inf ormation both at the sender and at the decoder. The available resources are shared entanglement, and noiseless classical and quantum communication channels. We derive one-shot direct and converse bounds for these three resources, represented in terms of the smooth conditional entropies of the source state. Various coding theorems for two-party source coding problems are systematically obtained by reduction from our results, including the ones that have not been addressed in previous literatures.
Many quantum machine learning (QML) algorithms that claim speed-up over their classical counterparts only generate quantum states as solutions instead of their final classical description. The additional step to decode quantum states into classical v ectors normally will destroy the quantum advantage in most scenarios because all existing tomographic methods require runtime that is polynomial with respect to the state dimension. In this Letter, we present an efficient readout protocol that yields the classical vector form of the generated state, so it will achieve the end-to-end advantage for those quantum algorithms. Our protocol suits the case that the output state lies in the row space of the input matrix, of rank $r$, that is stored in the quantum random access memory. The quantum resources for decoding the state in $ell_2$-norm with $epsilon$ error require $text{poly}(r,1/epsilon)$ copies of the output state and $text{poly}(r, kappa^r,1/epsilon)$ queries to the input oracles, where $kappa$ is the condition number of the input matrix. With our read-out protocol, we completely characterise the end-to-end resources for quantum linear equation solvers and quantum singular value decomposition. One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure, which we believe, will be of independent interest.
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies. However, noise has often played beneficial roles, from enhancing weak signals in stochastic resonanc e to protecting the privacy of data in differential privacy. It is then natural to ask, can we harness the power of quantum noise that is beneficial to quantum computing? An important current direction for quantum computing is its application to machine learning, such as classification problems. One outstanding problem in machine learning for classification is its sensitivity to adversarial examples. These are small, undetectable perturbations from the original data where the perturbed data is completely misclassified in otherwise extremely accurate classifiers. They can also be considered as `worst-case perturbations by unknown noise sources. We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived where the robustness improves with increasing noise. This robustness property is intimately connected with an important security concept called differential privacy which can be extended to quantum differential privacy. For the protection of quantum data, this is the first quantum protocol that can be used against the most general adversaries. Furthermore, we show how the robustness in the classical case can be sensitive to the details of the classification model, but in the quantum case the details of classification model are absent, thus also providing a potential quantum advantage for classical data that is independent of quantum speedups. This opens the opportunity to explore other ways in which quantum noise can be used in our favour, as well as identifying other ways quantum algorithms can be helpful that is independent of quantum speedups.
Quantum resource theory under different classes of quantum operations advances multiperspective understandings of inherent quantum-mechanical properties, such as quantum coherence and quantum entanglement. We establish hierarchies of different operat ions for manipulating coherence and entanglement in distributed settings, where at least one of the two spatially separated parties are restricted from generating coherence. In these settings, we introduce new classes of operations and also characterize those maximal, i.e., the resource-non-generating operations, progressing beyond existing studies on incohere
In this paper, we present a new framework to obtain tail inequalities for sums of random matrices. Compared with existing works, our tail inequalities have the following characteristics: 1) high feasibility--they can be used to study the tail behavio r of various matrix functions, e.g., arbitrary matrix norms, the absolute value of the sum of the sum of the $j$ largest singular values (resp. eigenvalues) of complex matrices (resp. Hermitian matrices); and 2) independence of matrix dimension --- they do not have the matrix-dimension term as a product factor, and thus are suitable to the scenario of high-dimensional or infinite-dimensional random matrices. The price we pay to obtain these advantages is that the convergence rate of the resulting inequalities will become slow when the number of summand random matrices is large. We also develop the tail inequalities for matrix random series and matrix martingale difference sequence. We also demonstrate usefulness of our tail bounds in several fields. In compressed sensing, we employ the resulted tail inequalities to achieve a proof of the restricted isometry property when the measurement matrix is the sum of random matrices without any assumption on the distributions of matrix entries. In probability theory, we derive a new upper bound to the supreme of stochastic processes. In machine learning, we prove new expectation bounds of sums of random matrices matrix and obtain matrix approximation schemes via random sampling. In quantum information, we show a new analysis relating to the fractional cover number of quantum hypergraphs. In theoretical computer science, we obtain randomness-efficient samplers using matrix expander graphs that can be efficiently implemented in time without dependence on matrix dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا