ترغب بنشر مسار تعليمي؟ اضغط هنا

In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm which has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterpart in the dominant factor of the run time to handle each generation.
Eigenvalue-preserving-but-not-completely-eigenvalue-preserving (EnCE) maps were previously introduced for the purpose of detection and quantification of nonclassical correlation, employing the paradigm where nonvanishing quantum discord implies the e xistence of nonclassical correlation. It is known that only the matrix transposition is nontrivial among Hermiticity-preserving (HP) linear EnCE maps when we use the changes in the eigenvalues of a density matrix due to a partial map for the purpose. In this paper, we prove that this is true even among not-necessarily HP (nnHP) linear EnCE maps. The proof utilizes a conventional theorem on linear preservers. This result imposes a strong limitation on the linear maps and promotes the importance of nonlinear maps.
In the context of the Oppenheim-Horodecki paradigm of nonclassical correlation, a bipartite quantum state is (properly) classically correlated if and only if it is represented by a density matrix having a product eigenbasis. On the basis of this para digm, we propose a measure of nonclassical correlation by using truncations of a density matrix down to individual eigenspaces. It is computable within polynomial time in the dimension of the Hilbert space albeit imperfect in the detection range. This is in contrast to the measures conventionally used for the paradigm. The computational complexity and mathematical properties of the proposed measure are investigated in detail and the physical picture of its definition is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا