ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate dynamical properties of bright solitons with a finite background in the F=1 spinor Bose-Einstein condensate (BEC), based on an integrable spinor model which is equivalent to the matrix nonlinear Schr{o}dinger equation with a self-focus ing nonlineality. We apply the inverse scattering method formulated for nonvanishing boundary conditions. The resulting soliton solutions can be regarded as a generalization of those under vanishing boundary conditions. One-soliton solutions are derived in an explicit manner. According to the behaviors at the infinity, they are classified into two kinds, domain-wall (DW) type and phase-shift (PS) type. The DW-type implies the ferromagnetic state with nonzero total spin and the PS-type implies the polar state, where the total spin amounts to zero. We also discuss two-soliton collisions. In particular, the spin-mixing phenomenon is confirmed in a collision involving the DW-type. The results are consistent with those of the previous studies for bright solitons under vanishing boundary conditions and dark solitons. As a result, we establish the robustness and the usefulness of the multiple matter-wave solitons in the spinor BECs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا