ترغب بنشر مسار تعليمي؟ اضغط هنا

Results of our recent re-analysis of the electroweak contribution to the relation between pole and running masses of top-quark within the Standard Model is reviewed. We argue, that if vacuum of SM is stable, then there exists an optimal value of reno rmalization group scale (IR-point), at which the radiative corrections to the matching condition between parameters of Higgs sector and pole masses is minimal or equal to zero. Within the available accuracy, we find the IR-point to lie in an interval between value of Z-boson mass and twice the value of W-boson mass. The value of scale is relevant for extraction of Higgs self-coupling from cross-section as well as for construction of effective Lagrangian.
We prove the following theorems: 1) The Laurent expansions in epsilon of the Gauss hypergeometric functions 2F1(I_1+a*epsilon, I_2+b*epsilon; I_3+p/q + c epsilon; z), 2F1(I_1+p/q+a*epsilon, I_2+p/q+b*epsilon; I_3+ p/q+c*epsilon;z), 2F1(I_1+p/ q+a*epsilon, I_2+b*epsilon; I_3+p/q+c*epsilon;z), where I_1,I_2,I_3,p,q are arbitrary integers, a,b,c are arbitrary numbers and epsilon is an infinitesimal parameter, are expressible in terms of multiple polylogarithms of q-roots of unity with coefficients that are ratios of polynomials; 2) The Laurent expansion of the Gauss hypergeometric function 2F1(I_1+p/q+a*epsilon, I_2+b*epsilon; I_3+c*epsilon;z) is expressible in terms of multiple polylogarithms of q-roots of unity times powers of logarithm with coefficients that are ratios of polynomials; 3) The multiple inverse rational sums (see Eq. (2)) and the multiple rational sums (see Eq. (3)) are expressible in terms of multiple polylogarithms; 4) The generalized hypergeometric functions (see Eq. (4)) are expressible in terms of multiple polylogarithms with coefficients that are ratios of polynomials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا