ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Greens functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.
We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Greens functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic fields, spin-orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii-Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole-dipole interaction). Our procedure provides the complete exchange tensors in a unified framework, including previously disregarded features such as the vertices of two-particle Greens functions and non-local self-energies. We do not assume any smallness in spin-orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin-orbital contributions to magnetism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا