ترغب بنشر مسار تعليمي؟ اضغط هنا

(Abridged) We present a deep Chandra observation of the late-type barred spiral galaxy NGC 2903. The Chandra data reveal soft (kT_e ~ 0.2-0.5keV) diffuse emission in the nuclear starburst region and extending ~5kpc to the north and west of the nucleu s. Much of this soft hot gas is likely to be from local active star-forming regions; however, besides the nuclear region, the morphology of hot gas does not strongly correlate with sites of active star formation. The central ~650 pc radius starburst zone exhibits much higher surface brightness diffuse emission than the surrounding regions and a harder spectral component in addition to its soft component. We interpret the hard component as being of thermal origin with kT_e~3.6keV and to be directly associated with a wind fluid produced by supernovae and massive star winds. The inferred terminal velocity for this hard component, ~1100 km/s, exceeds the local galaxy escape velocity suggesting a potential outflow. The softer extended emission does not display an obvious outflow geometry. However, the column density through which the X-rays are transmitted is lower to the west of the nucleus compared to the east and the surface brightness is higher there suggesting some soft hot gas originates from above the disk; viewed directly from the western zone but through the intervening galaxy disk from the eastern zone. There are several point-like sources in the nuclear region with X-ray spectra typical of compact binaries. None of these are coincident with the mass center of the galaxy and we place an upper limit luminosity from any point-like nuclear source to be < 2x10^38 ergs/s in the 0.5-8.0keV band which indicates that NGC 2903 lacks an active galactic nucleus. Heating from the nuclear starburst and a galactic wind may be responsible for preventing cold gas from accreting onto the galactic center.
The M81 group member dwarf galaxy IC 2574 hosts a supergiant shell of current and recent star-formation activity surrounding a 1000 x 500 pc hole in the ambient Hi gas distribution. Chandra X-ray Observatory imaging observations reveal a luminous, L_ x ~ 6.5 x 10^{38} erg/s in the 0.3 - 8.0 keV band, point-like source within the hole but offset from its center and fainter diffuse emission extending throughout and beyond the hole. The star formation history at the location of the point source indicates a burst of star formation beginning ~25 Myr ago and currently weakening and there is a young nearby star cluster, at least 5 Myr old, bracketing the likely age of the X-ray source at between 5 and ~25 Myr. The source is thus likely a bright high-mass X-ray binary --- either a neutron star or black hole accreting from an early B star undergoing thermal-timescale mass transfer through Roche lobe overflow. The properties of the residual diffuse X-ray emission are consistent with those expected from hot gas associated with the recent star-formation activity in the region.
80 - Ka-Wah Wong 2011
Gas undergoing Bondi accretion onto a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observations show has a very massive SMBH. O ur analysis suggests that we are resolving, for the first time, the accretion flow within the Bondi radius of an SMBH. We show that the temperature is rising toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. There is no hard central point source that could cause such an apparent rise in temperature. The data support that the Bondi radius is at about 4 arcsec-5 arcsec (188-235 pc), suggesting an SMBH of 2 x 10^9 M_sun that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power-law index of 1.03^{+0.23}_{-0.21} which is consistent with gas in transition from the ambient medium and the accretion flow. The accretion rate at the Bondi radius is determined to be {dot M}_B = 2.2 x 10^{-2} M_sun yr^{-1}. Thus, the accretion luminosity with 10% radiative efficiency at the Bondi radius (10^{44} erg s^{-1}) is about six orders of magnitude higher than the upper limit of the X-ray luminosity of the nucleus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا