ترغب بنشر مسار تعليمي؟ اضغط هنا

We developed an all-optical link system for making remote comparisons of two distant ultra-stable optical clocks. An optical carrier transfer system based on a fiber interferometer was employed to compensate the phase noise accumulated during the pro pagation through a fiber link. Transfer stabilities of $2times10^{-15}$ at 1 second and $4times10^{-18}$ at 1000 seconds were achieved in a 90-km link. An active polarization control system was additionally introduced to maintain the transmitted light in an adequate polarization, and consequently, a stable and reliable comparison was accomplished. The instabilities of the all-optical link system, including those of the erbium doped fiber amplifiers (EDFAs) which are free from phase-noise compensation, were below $2times10^{-15}$ at 1 second and $7times10^{-17}$ at 1000 seconds. The system was available for the direct comparison of two distant $^{87}$Sr lattice clocks via an urban fiber link of 60 km. This technique will be essential for the measuring the reproducibility of optical frequency standards.
Fiber-based remote comparison of $^{87}$Sr lattice clocks in 24 km distant laboratories is demonstrated. The instability of the comparison reaches $5times10^{-16}$ over an averaging time of 1000 s, which is two orders of magnitude shorter than that o f conventional satellite links and is limited by the instabilities of the optical clocks. By correcting the systematic shifts that are predominated by the differential gravitational redshift, the residual fractional difference is found to be $(1.0pm7.3)times10^{-16}$, confirming the coincidence between the two clocks. The accurate and speedy comparison of distant optical clocks paves the way for a future optical redefinition of the second.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا