ترغب بنشر مسار تعليمي؟ اضغط هنا

Modal and nonmodal analyses of fluid flows provide fundamental insight into the early stages of transition to turbulence. Eigenvalues of the dynamical generator govern temporal growth or decay of individual modes, while singular values of the frequen cy response operator quantify the amplification of disturbances for linearly stable flows. In this paper, we develop well-conditioned ultraspherical and spectral integration methods for frequency response analysis of channel flows of Newtonian and viscoelastic fluids. Even if a discretization method is well-conditioned, we demonstrate that calculations can be erroneous if singular values are computed as the eigenvalues of a cascade connection of the frequency response operator and its adjoint. To address this issue, we utilize a feedback interconnection of the frequency response operator with its adjoint to avoid computation of inverses and facilitate robust singular value decomposition. Specifically, in contrast to conventional spectral collocation methods, the proposed method (i) produces reliable results in channel flows of viscoelastic fluids at high Weissenberg numbers ($sim 500$); and (ii) does not require a staggered grid for the equations in primitive variables.
Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as $10%$, but their systematic design remains an open challenge. In this paper, we develop a model-based framework to qu antify the effect of streamwise-aligned spanwise-periodic riblets on kinetic energy and skin-friction drag in turbulent channel flow. We model the effect of riblets as a volume penalization in the Navier-Stokes equations and use the statistical response of the eddy-viscosity-enhanced linearized equations to quantify the effect of background turbulence on the mean velocity and skin-friction drag. For triangular riblets, our simulation-free approach reliably predicts drag-reducing trends as well as mechanisms that lead to performance deterioration for large riblets. We investigate the effect of height and spacing on drag reduction and demonstrate a correlation between energy suppression and drag-reduction for appropriately sized riblets. We also analyze the effect of riblets on drag reduction mechanisms and turbulent flow structures including very large scale motions. Our results demonstrate the utility of our approach in capturing the effect of riblets on turbulent flows using models that are tractable for analysis and optimization.
Modal stability analysis provides information about the long-time growth or decay of small-amplitude perturbations around a steady-state solution of a dynamical system. In fluid flows, exponentially growing perturbations can initiate departure from l aminar flow and trigger transition to turbulence. Although flow of a Newtonian fluid through a pipe is linearly stable for very large values of the Reynolds number ($Re sim 10^7$), a transition to turbulence often occurs for $Re$ as low as $1500$. When a dilute polymer solution is used in the place of a Newtonian fluid, the transitional value of the Reynolds number decreases even further. Using the spectral collocation method and Oldroyd-B constitutive equation, Garg et al. (Phys. Rev. Lett. 121:024502, 2018) claimed that such a transition in viscoelastic fluids is related to linear instability. Since differential matrices in the collocation method become ill-conditioned when a large number of basis functions is used, we revisit this problem using the well-conditioned spectral integration method. We show modal stability of viscoelastic pipe flow for a broad range of fluid elasticities and polymer concentrations, including cases considered by Garg et al. Similarly, we find that plane Poiseuille flow is linearly stable for cases where Garg et al. report instability. In both channel and pipe flows, we establish the existence of spurious modes that diverge slowly with finer discretization and demonstrate that these can be mistaken for grid-independent modes if the discretization is not fine enough.
Many large-scale and distributed optimization problems can be brought into a composite form in which the objective function is given by the sum of a smooth term and a nonsmooth regularizer. Such problems can be solved via a proximal gradient method a nd its variants, thereby generalizing gradient descent to a nonsmooth setup. In this paper, we view proximal algorithms as dynamical systems and leverage techniques from control theory to study their global properties. In particular, for problems with strongly convex objective functions, we utilize the theory of integral quadratic constraints to prove the global exponential stability of the equilibrium points of the differential equations that govern the evolution of proximal gradient and Douglas-Rachford splitting flows. In our analysis, we use the fact that these algorithms can be interpreted as variable-metric gradient methods on the suitable envelopes and exploit structural properties of the nonlinear terms that arise from the gradient of the smooth part of the objective function and the proximal operator associated with the nonsmooth regularizer. We also demonstrate that these envelopes can be obtained from the augmented Lagrangian associated with the original nonsmooth problem and establish conditions for global exponential convergence even in the absence of strong convexity.
We study the robustness of accelerated first-order algorithms to stochastic uncertainties in gradient evaluation. Specifically, for unconstrained, smooth, strongly convex optimization problems, we examine the mean-squared error in the optimization va riable when the iterates are perturbed by additive white noise. This type of uncertainty may arise in situations where an approximation of the gradient is sought through measurements of a real system or in a distributed computation over a network. Even though the underlying dynamics of first-order algorithms for this class of problems are nonlinear, we establish upper bounds on the mean-squared deviation from the optimal solution that are tight up to constant factors. Our analysis quantifies fundamental trade-offs between noise amplification and convergence rates obtained via any acceleration scheme similar to Nesterovs or heavy-ball methods. To gain additional analytical insight, for strongly convex quadratic problems, we explicitly evaluate the steady-state variance of the optimization variable in terms of the eigenvalues of the Hessian of the objective function. We demonstrate that the entire spectrum of the Hessian, rather than just the extreme eigenvalues, influence robustness of noisy algorithms. We specialize this result to the problem of distributed averaging over undirected networks and examine the role of network size and topology on the robustness of noisy accelerated algorithms.
Nonmodal amplification of stochastic disturbances in elasticity-dominated channel flows of Oldroyd-B fluids is analyzed in this work. For streamwise-constant flows with high elasticity numbers $mu$ and finite Weissenberg numbers $We$, we show that th e linearized dynamics can be decomposed into slow and fast subsystems, and establish analytically that the steady-state variances of velocity and polymer stress fluctuations scale as $O (We^2)$ and $O (We^4)$, respectively. This demonstrates that large velocity variance can be sustained even in weakly inertial stochastically driven channel flows of viscoelastic fluids. We further show that the wall-normal and spanwise forces have the strongest impact on the flow fluctuations, and that the influence of these forces is largest on the fluctuations in streamwise velocity and the streamwise component of the polymer stress tensor. The underlying physical mechanism involves polymer stretching that introduces a lift-up of flow fluctuations similar to vortex tilting in inertia-dominated flows. The validity of our analytical results is confirmed in stochastic simulations. The phenomenon examined here provides a possible route for the early stages of a bypass transition to elastic turbulence and might be exploited to enhance mixing in microfluidic devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا