ترغب بنشر مسار تعليمي؟ اضغط هنا

Modern optical atomic clocks along with the optical fiber technology currently being developed can measure the geoid, which is the equipotential surface that extends the mean sea level on continents, to a precision that competes with existing technol ogy. In this proceeding, we point out that atomic clocks have the potential to not only map the sea level surface on continents, but also look at variations of the geoid as a function of time with unprecedented timing resolution. The local time series of the geoid has a plethora of applications. These include potential improvement in the predictions of earthquakes and volcanoes, and closer monitoring of ground uplift in areas where hydraulic fracturing is performed.
The geoid is the true physical figure of the Earth, a particular equipotential surface of the gravity field of the Earth that accounts for the effect of all subsurface density variations. Its shape approximates best (in the sense of least squares) th e mean level of oceans, but the geoid is more difficult to determine over continents. Satellite missions carry out distance measurements and derive the gravity field to provide geoid maps over the entire globe. However, they require calibration and extensive computations including integration, which is a non-unique operation. Here we propose a direct method and a new tool that directly measures geopotential differences on continents using atomic clocks. General Relativity Theory predicts constant clock rate at sea level, and faster (resp. slower) clock rate above (resp. below) sea level. The technology of atomic clocks is on the doorstep of reaching an accuracy level in clock rate that is equivalent to 1 cm in determining equipotential surface (including geoid) height. We discuss the value and future applicability of such measurements including direct geoid mapping on continents, and joint gravity and geopotential surveying to invert for subsurface density anomalies. Our synthetic calculations show that the geoid perturbation caused by a 1.5 km radius sphere with 20% density anomaly buried at 2 km depth in the crust of the Earth is already detectable by atomic clocks of achievable accuracy. Therefore atomic clock geopotential surveys, used together with relative gravity data to benefit from their different depth sensitivities, can become a useful tool in mapping density anomalies within the Earth.
In this paper we focus on the gravitational thermodynamics of the far future. Cosmological observations suggest that most matter will be diluted away by the cosmological expansion, with the rest collapsing into supermassive black holes. The likely fu ture state of our local universe is a supermassive black hole slowly evaporating in an empty universe dominated by a positive cosmological constant. We describe some overlooked features of how the cosmological horizon responds to the black hole evaporation. The presence of a black hole depresses the entropy of the cosmological horizon by an amount proportional to the geometric mean of the entropies of the black hole and cosmological horizons. As the black hole evaporates and loses its mass in the process, the total entropy increases obeying the second law of thermodynamics. The entropy is produced by the heat from the black hole flowing across the extremely cold cosmological horizon. Once the evaporation is complete, the universe becomes empty de Sitter space that (in the presence of a true cosmological constant) is the maximum entropy thermodynamic equilibrium state. We propose that flat Minkowski space is an improper limit of this process which obscures the thermodynamics. The cosmological constant should be regarded not only as an energy scale, but also as a scale for the maximum entropy of a universe. In this context, flat Minkowski space is indistinguishable from de Sitter with extremely small cosmological constant, yielding a divergent entropy. This introduces an unregulated infinity in black hole thermodynamics calculations, giving possibly misleading results.
We discuss the thermal evolution and Bose-Einstein condensation of ultra-light dark matter particles at finite, realistic cosmological temperatures. We find that if these particles decouple from regular matter before Standard model particles annihila te, their temperature will be about 0.9 K. This temperature is substantially lower than the temperature of CMB neutrinos and thus Big Bang Nucleosynthesis remains unaffected. In addition the temperature is consistent with WMAP 7-year+BAO+H0 observations without fine-tuning. We focus on particles of mass of $msim 10^{-23}$ eV, which have Compton wavelengths of galactic scales. Agglomerations of these particles can form stable halos and naturally prohibit small scale structure. They avoid over-abundance of dwarf galaxies and may be favored by observations of dark matter distributions. We present numerical as well as approximate analytical solutions of the Friedmann-Klein-Gordon equations and study the cosmological evolution of this scalar field dark matter from the early universe to the era of matter domination. Today, the particles in the ground state mimic presureless matter, while the excited state particles are radiation like.
We report the results of a recent search for the lowest value of thermal noise that can be achieved in LIGO by changing the shape of mirrors, while fixing the mirror radius and maintaining a low diffractional loss. The result of this minimization is a beam with thermal noise a factor of 2.32 (in power) lower than previously considered Mesa Beams and a factor of 5.45 (in power) lower than the Gaussian beams employed in the current baseline design. Mirrors that confine these beams have been found to be roughly conical in shape, with an average slope approximately equal to the mirror radius divided by arm length, and with mild corrections varying at the Fresnel scale. Such a mirror system, if built, would impact the sensitivity of LIGO, increasing the event rate of observing gravitational waves in the frequency range of maximum sensitivity roughly by a factor of three compared to an Advanced LIGO using Mesa beams (assuming all other noises remain unchanged). We discuss the resulting beam and mirror properties and study requirements on mirror tilt, displacement and figure error, in order for this beam to be used in LIGO detectors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا