ترغب بنشر مسار تعليمي؟ اضغط هنا

The cores of clusters at 0 $lesssim$ z $lesssim$ 1 are dominated by quiescent early-type galaxies, whereas the field is dominated by star-forming late-type ones. Galaxy properties, notably the star formation (SF) ability, are altered as they fall int o overdense regions. The critical issues to understand this evolution are how the truncation of SF is connected to the morphological transformation and the responsible physical mechanism. The GaLAxy Cluster Evolution Survey (GLACE) is conducting a study on the variation of galaxy properties (SF, AGN, morphology) as a function of environment in a representative sample of clusters. A deep survey of emission line galaxies (ELG) is being performed, mapping a set of optical lines ([OII], [OIII], H$beta$ and H$alpha$/[NII]) in several clusters at z $sim$ 0.40, 0.63 and 0.86. Using the Tunable Filters (TF) of OSIRIS/GTC, GLACE applies the technique of TF tomography: for each line, a set of images at different wavelengths are taken through the TF, to cover a rest frame velocity range of several thousands km/s. The first GLACE results target the H$alpha$/[NII] lines in the cluster ZwCl 0024.0+1652 at z = 0.395 covering $sim$ 2 $times$ r$_{vir}$. We discuss the techniques devised to process the TF tomography observations to generate the catalogue of H$alpha$ emitters of 174 unique cluster sources down to a SFR below 1 M$_{odot}$/yr. The AGN population is discriminated using different diagnostics and found to be $sim$ 37% of the ELG population. The median SFR is 1.4 M$_{odot}$/yr. We have studied the spatial distribution of ELG, confirming the existence of two components in the redshift space. Finally, we have exploited the outstanding spectral resolution of the TF to estimate the cluster mass from ELG dynamics, finding M$_{200}$ = 4.1 $times$ 10$^{14}$ M$_{odot} h^{-1}$, in agreement with previous weak-lensing estimates.
We present the activities carried out to calibrate and characterise the performance of the elements of attitude control and measurement on board the Herschel spacecraft. The main calibration parameters and the evolution of the indicators of the point ing performance are described, from the initial values derived from the observations carried out in the performance verification phase to those attained in the last year and half of mission, an absolute pointing error around or even below 1 arcsec, a spatial relative pointing error of some 1 arcsec and a pointing stability below 0.2 arsec. The actions carried out at the ground segment to improve the spacecraft pointing measurements are outlined. On-going and future developments towards a final refinement of the Herschel astrometry are also summarised. A brief description of the different components of the attitude control and measurement system (both in the space and in the ground segments) is also given for reference. We stress the importance of the cooperation between the different actors (scientists, flight dynamics and systems engineers, attitude control and measurement hardware designers, star-tracker manufacturers, etc.) to attain the final level of performance.
The studies of the evolution of galaxies in Galaxy Clusters have as a traditional complication the difficulty in establishing cluster membership of those sources detected in the field of view. The determination of spectroscopic redshifts involves lon g exposure times when it is needed to reach the cluster peripherical regions of/or clusters at moderately large redshifts, while photometric redshifts often present uncertainties too large to offer significant conclusions. The mapping of the cluster of galaxies with narrow band tunable filters makes it possible to reach large redshifts intervals with an accuracy high enough to establish the source membership of those presenting emission/absorption lines easily identifiable, as H alpha. Moreover, the wavelength scan can include other lines as [NII], [OIII] or $H_{beta}$ allowing to distinguish those sources with strong stellar formation activity and those with an active galactic nuclei. All this makes it possible to estimate the stellar formation rate of the galaxies observed. This, together with ancillary data in other wavelengths may lead to a good estimation of the stellar formation histories. It will shed new light over the galaxy evolution in clusters and will improve our understanding of galaxy evolution, especially in the outer cluster regions, usually less studied and with significant unexploited data that can not be correctly interpreted without redshift determination.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا