ترغب بنشر مسار تعليمي؟ اضغط هنا

We study and extend the semidefinite programming (SDP) hierarchies introduced in [Phys. Rev. Lett. 115, 020501] for the characterization of the statistical correlations arising from finite dimensional quantum systems. First, we introduce the dimensio n-constrained noncommutative polynomial optimization (NPO) paradigm, where a number of polynomial inequalities are defined and optimization is conducted over all feasible operator representations of bounded dimensionality. Important problems in device independent and semi-device independent quantum information science can be formulated (or almost formulated) in this framework. We present effective SDP hierarchies to attack the general dimension-constrained NPO problem (and related ones) and prove their asymptotic convergence. To illustrate the power of these relaxations, we use them to derive new dimension witnesses for temporal and Bell-type correlation scenarios, and also to bound the probability of success of quantum random access codes.
We describe a simple method to derive high performance semidefinite programming relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program and allows the us er to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in bipartite and tripartite Bell scenarios where the dimension of a subset of the parties is bounded from above. We derive new results in quantum communication complexity and prove the soundness of the prepare-and-measure dimension witnesses introduced in [Phys. Rev. Lett. 105, 230501 (2010)]. Finally, we propose a new dimension witness that can distinguish between classical, real and complex two-level systems.
There have been a number of attempts to derive the set of quantum non-local correlations from reasonable physical principles. Here we introduce $tilde{Q}$, a set of multipartite supra-quantum correlations that has appeared under different names in fi elds as diverse as graph theory, quantum gravity and quantum information science. We argue that $tilde{Q}$ may correspond to the set of correlations of a reasonable physical theory, in which case the research program to reconstruct quantum theory from device-independent principles is met with strong obstacles. In support of this conjecture, we prove that $tilde{Q}$ is closed under classical operations and satisfies the physical principles of Non-Trivial Communication Complexity, No Advantage for Nonlocal Computation, Macroscopic Locality and Local Orthogonality. We also review numerical evidence that almost quantum correlations satisfy Information Causality.
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c haracterised (or are untrusted) and has applications in quantum key distribution. Despite its foundational and applied importance, EPR steering lacks a quantitative assessment. Here we propose a way of quantifying this phenomenon and use it to study the steerability of several quantum states. In particular we show that every pure entangled state is maximally steerable, the projector onto the anti-symmetric subspace is maximally steerable for all dimensions, we provide a new example of one-way steering, and give strong support that states with positive-partial-transposition are not steerable.
We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalit ies and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.
We consider optimization problems with polynomial inequality constraints in non-commuting variables. These non-commuting variables are viewed as bounded operators on a Hilbert space whose dimension is not fixed and the associated polynomial inequalit ies as semidefinite positivity constraints. Such problems arise naturally in quantum theory and quantum information science. To solve them, we introduce a hierarchy of semidefinite programming relaxations which generates a monotone sequence of lower bounds that converges to the optimal solution. We also introduce a criterion to detect whether the global optimum is reached at a given relaxation step and show how to extract a global optimizer from the solution of the corresponding semidefinite programming problem.
Chloroplast microsatellites are becoming increasingly popular markers for population genetic studies in plants, but there has been little focus on their potential for demographic inference. In this work the utility of chloroplast microsatellites for the study of population expansions was explored. First, we investigated the power of mismatch distribution analysis and the F(S) test with coalescent simulations of different demographic scenarios. We then applied these methods to empirical data obtained for the Canary Island pine (Pinus canariensis). The results of the simulations showed that chloroplast microsatellites are sensitive to sudden population growth. The power of the F(S) test and accuracy of demographic parameter estimates, such as the time of expansion, were reduced proportionally to the level of homoplasy within the data. The analysis of Canary Island pine chloroplast microsatellite data indicated population expansions for almost all sample localities. Demographic expansions at the island level can be explained by the colonization of the archipelago by the pine, while population expansions of different ages in different localities within an island could be the result of local extinctions and recolonization dynamics. Comparable mitochondrial DNA sequence data from a parasite of P. canariensis, the weevil Brachyderes rugatus, supports this scenario, suggesting a key role for volcanism in the evolution of pine forest communities in the Canary Islands.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا