ترغب بنشر مسار تعليمي؟ اضغط هنا

Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and few-layer MoSe2 grown on bilayer graphene. We find that the electronic (quasiparticle) bandgap, a fundamental parameter for transport and optical phenomena, decreases by nearly one electronvolt when going from one layer to three due to interlayer coupling and screening effects. Our results paint a clear picture of the evolution of the electronic wave function hybridization in the valleys of both the valence and conduction bands as the number of layers is changed. This demonstrates the importance of layer number and electron-electron interactions on van der Waals heterostructures, and helps to clarify how their electronic properties might be tuned in future 2D nanodevices.
We provide a thorough study of a carbon divacancy, a fundamental but almost unexplored point defect in graphene. Low temperature scanning tunneling microscopy (STM) imaging of irradiated graphene on different substrates enabled us to identify a commo n two-fold symmetry point defect. Our first principles calculations reveal that the structure of this type of defect accommodates two adjacent missing atoms in a rearranged atomic network formed by two pentagons and one octagon, with no dangling bonds. Scanning tunneling spectroscopy (STS) measurements on divacancies generated in nearly ideal graphene show an electronic spectrum dominated by an empty-states resonance, which is ascribed to a spin-degenerated nearly flat band of $pi$-electron nature. While the calculated electronic structure rules out the formation of a magnetic moment around the divacancy, the generation of an electronic resonance near the Fermi level, reveals divacancies as key point defects for tuning electron transport properties in graphene systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا