ترغب بنشر مسار تعليمي؟ اضغط هنا

Several schemes have been proposed to extend Quantum Key Distribution protocols aiming at improving their security or at providing new physical substrates for qubit implementation. We present a toolbox to jointly create, manipulate and measure qubits stored in polarization and transverse-modes degrees of freedom of single photons. The toolbox includes local operations on single qubits, controlled operations between the two qubits and projective measurements over a wide variety of non-local bases in the four dimensional space of states. We describe how to implement the toolbox to perform an extended version of the BB84 protocol for this Hilbert space (ideally transmitting two key bits per photon). We present the experimental implementation of the measurement scheme both in the regimes of intense light beams and with single photons. Thus, we show the feasibility of implementing the protocol providing an interesting example of a new method for quantum information processing using the polarization and transverse modes of light as qubits.
We present the results of the first photonic implementation of a new method for quantum process tomography. The method (originally presented by A. Bendersky et al, Phys. Rev. Lett 100, 190403 (2008)) enables the estimation of any element of the chi-m atrix that characterizes a quantum process using resources that scale polynomially with the number of qubits. It is based on the idea of mapping the estimation of any chi-matrix element onto the average fidelity of a quantum channel and estimating the latter by sampling randomly over a special set of states called a 2-design. With a heralded single photon source we fully implement such algorithm and perform process tomography on a number of channels affecting the polarization qubit. The method is compared with other existing ones and its advantages are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا