ترغب بنشر مسار تعليمي؟ اضغط هنا

The homogeneous electron gas (HEG) is a key ingredient in the construction of most exchange-correlation functionals of density-functional theory. Often, the energy of the HEG is parameterized as a function of its spin density $n$, leading to the loca l density approximation (LDA) for inhomogeneous systems. However, the connection between the electron density and kinetic energy density of the HEG can be used to generalize the LDA by evaluating it on a weighted geometric average of the local spin density and the spin density of a HEG that has the local kinetic energy density of the inhomogeneous system, with a mixing ratio $x$. This leads to a new family of functionals that we term meta-local density approximations (meta-LDAs), which are still exact for the HEG, which are derived only from properties of the HEG, and which form a new rung of Jacobs ladder of density functionals. The first functional of this ladder, the local $tau$ approximation (LTA) of Ernzerhof and Scuseria that corresponds to $x=1$ is unfortunately not stable enough to be used in self-consistent field calculations, because it leads to divergent potentials as we show in this work. However, a geometric averaging of the LDA and LTA densities with smaller values of $x$ not only leads to numerical stability of the resulting functional, but also yields more accurate exchange energies in atomic calculations than the LDA, the LTA, or the tLDA functional ($x=1/4$) of Eich and Hellgren. We choose $x=0.50$ as it gives the best total energy in self-consistent exchange-only calculations for the argon atom. Atomization energy benchmarks confirm that the choice $x=0.50$ also yields improved energetics in combination with correlation functionals in molecules, almost eliminating the well-known overbinding of the LDA and reducing its error by two thirds.
The electronic band structures of two-dimensional materials are significantly different from those of their bulk counterparts, due to quantum confinement and strong modifications of electronic screening. An accurate determination of electronic states is a prerequisite to design electronic or optoelectronic applications of two-dimensional materials, however, most of the theoretical methods we have available to compute band gaps are either inaccurate, computationally expensive, or only applicable to bulk systems. Here we show that reliable band structures of nanostructured systems can now be efficiently calculated using density-functional theory with the local modified Becke-Johnson exchange-correlation functional that we recently proposed. After re-optimizing the parameters of this functional specifically for two-dimensional materials, we show, for a test set of almost 300 systems, that the obtained band gaps are of comparable quality as those obtained using the best hybrid functionals, but at a very reduced computational cost. These results open the way for accurate high-throughput studies of band-structures of two-dimensional materials and for the study of van der Waals heterostructures with large unit cells.
Based on a generalization of Hohenberg-Kohns theorem, we propose a ground state theory for bosonic quantum systems. Since it involves the one-particle reduced density matrix $gamma$ as a natural variable but still recovers quantum correlations in an exact way it is particularly well-suited for the accurate description of Bose-Einstein condensates. As a proof of principle we study the building block of optical lattices. The solution of the underlying $v$-representability problem is found and its peculiar form identifies the constrained search formalism as the ideal starting point for constructing accurate functional approximations: The exact functionals for this $N$-boson Hubbard dimer and general Bogoliubov-approximated systems are determined. The respective gradient forces are found to diverge in the regime of Bose-Einstein condensation, $ abla_{gamma} mathcal{F} propto 1/sqrt{1-N_{mathrm{BEC}}/N}$, providing a natural explanation for the absence of complete BEC in nature.
We train a neural network as the universal exchange-correlation functional of density-functional theory that simultaneously reproduces both the exact exchange-correlation energy and potential. This functional is extremely non-local, but retains the c omputational scaling of traditional local or semi-local approximations. It therefore holds the promise of solving some of the delocalization problems that plague density-functional theory, while maintaining the computational efficiency that characterizes the Kohn-Sham equations. Furthermore, by using automatic differentiation, a capability present in modern machine-learning frameworks, we impose the exact mathematical relation between the exchange-correlation energy and the potential, leading to a fully consistent method. We demonstrate the feasibility of our approach by looking at one-dimensional systems with two strongly-correlated electrons, where density-functional methods are known to fail, and investigate the behavior and performance of our functional by varying the degree of non-locality.
We present an textit{ab initio} theory for superconductors, based on a unique mapping between the statistical density operator at equilibrium, on the one hand, and the corresponding one-body reduced density matrix $gamma$ and the anomalous density $c hi$, on the other. This new formalism for superconductivity yields the existence of a universal functional $mathfrak{F}_beta[gamma,chi]$ for the superconductor ground state, whose unique properties we derive. We then prove the existence of a Kohn-Sham system at finite temperature and derive the corresponding Bogoliubov-de Gennes-like single particle equations. By adapting the decoupling approximation from density functional theory for superconductors we bring these equations into a computationally feasible form. Finally, we use the existence of the Kohn-Sham system to extend the Sham-Schluter connection and derive a first exchange-correlation functional for our theory. This reduced density matrix functional theory for superconductors has the potential of overcoming some of the shortcomings and fundamental limitations of density functional theory of superconductivity.
We derive an equation for the time evolution of the natural occupation numbers for fermionic systems with more than two electrons. The evolution of such numbers is connected with the symmetry-adapted generalized Pauli exclusion principle, as well as with the evolution of the natural orbitals and a set of many-body relative phases. We then relate the evolution of these phases to a geometrical and a dynamical term, attached to each one of the Slater determinants appearing in the configuration-interaction expansion of the wave function.
Based on recent progress on fermionic exchange symmetry we propose a way to develop new functionals for reduced density matrix functional theory. For some settings with an odd number of electrons, by assuming saturation of the inequalities stemming f rom the generalized Pauli principle, the many-body wave-function can be written explicitly in terms of the natural occupation numbers and natural orbitals. This leads to an expression for the two-particle density matrix and therefore for the correlation energy functional. This functional was then tested for a three-electron Hubbard model where it showed excellent performance both in the weak and strong correlation regimes.
Aiming at a unified treatment of correlation and inhomogeneity effects in superconductors, Oliveira, Gross and Kohn proposed in 1988 a density functional theory for the superconducting state. This theory relies on the existence of a Kohn-Sham scheme, i.e., an auxiliary noninteracting system with the same electron and anomalous densities of the original superconducting system. However, the question of noninteracting $v$-representability has never been properly addressed and the existence of the Kohn-Sham system has always been assumed without proof. Here, we show that indeed such a noninteracting system does not exist in at zero temperature. In spite of this result, we also show that the theory is still able to yield good results, although in the limit of weakly correlated systems only.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا