ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way (MW) ultra-faint dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Pla netary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 10 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409 $^{+29}_{-27}$ kpc (distance modulus of 23.06 $pm$ 0.15 mag) was derived from the galaxys RR Lyrae star. Our V, V-I color-magnitude diagram of Leo T reaches V~29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the star formation history, based on the comparison of the observed V,V-I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex star formation history dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.
33 - Michele Cignoni 2011
A comprehensive census of Galactic open cluster properties places unique constraints on the Galactic disc structure and evolution. In this framework we investigate the evolutionary status of three poorly-studied open clusters, Berkeley 31, Berkeley 2 3 and King 8, all located in the Galactic anti-centre direction. To this aim, we make use of deep LBT observations, reaching more than 6 mag below the main sequence Turn- Off. To determine the cluster parameters, namely age, metallicity, distance, reddening and binary fraction, we compare the observational colour-magnitude diagrams (CMDs) with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC and FST) and metallicities. We find that Berkeley 31 is relatively old, with an age between 2.3 and 2.9 Gyr, and rather high above the Galactic plane, at about 700 pc. Berkeley 23 and King 8 are younger, with best fitting ages in the range 1.1-1.3 Gyr and 0.8-1.3 Gyr, respectively. The position above the Galactic plane is about 500- 600 pc for the former, and 200 pc for the latter. Although a spectroscopic confirmation is needed, our analysis suggests a sub-solar metallicity for all three clusters.
In this tutorial paper we summarize how the star formation (SF) history of a galactic region can be derived from the colour-magnitude diagram (CMD) of its resolved stars. The procedures to build synthetic CMDs and to exploit them to derive the SF his tories (SFHs) are described, as well as the corresponding uncertainties. The SFHs of resolved dwarf galaxies of all morphological types, obtained from the application of the synthetic CMD method, are reviewed and discussed. In short: 1) Only early-type galaxies show evidence of long interruptions in the SF activity; late-type dwarfs present rather continuous, or gasping, SF regimes; 2) A few early-type dwarfs have experienced only one episode of SF activity concentrated at the earliest epochs, whilst many others show extended or recurrent SF activity; 3) No galaxy experiencing now its first SF episode has been found yet; 4) No frequent evidence of strong SF bursts is found; 5) There is no significant difference in the SFH of dwarf irregulars and blue compact dwarfs, except for the current SF rates. Implications of these results on the galaxy formation scenarios are briefly discussed.
We have obtained CCD BVI imaging of the old open clusters Berkeley 32 and King 11. Using the synthetic colour-magnitude diagram method with three different sets of stellar evolution models of various metallicities, with and without overshooting, we h ave determined their age, distance, reddening, and indicative metallicity, as well as distance from the Galactic centre and height from the Galactic plane. The best parameters derived for Berkeley 32 are: subsolar metallicity (Z=0.008 represents the best choice, Z=0.006 or 0.01 are more marginally acceptable), age = 5.0-5.5 Gyr (models with overshooting; without overshooting the age is 4.2-4.4 Gyr with poorer agreement), (m-M)_0=12.4-12.6, E(B-V)=0.12-0.18 (with the lower value being more probable because it corresponds to the best metallicity), Rgc ~ 10.7-11 kpc, and |Z| ~ 231-254 pc. The best parameters for King 11 are: Z=0.01, age=3.5-4.75 Gyr, (m-M)_0=11.67-11.75, E(B-V)=1.03-1.06, Rgc ~ 9.2-10 kpc, and |Z| ~ 253-387 pc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا