ترغب بنشر مسار تعليمي؟ اضغط هنا

Supergranules are believed to be an evidence for large-scale subsurface convection. The vertical component of the supergranular flow field is very hard to measure, but it is considered only a few m/s in and below the photosphere. Here I present the r esults of the analysis using three-dimensional inversion for time-distance helioseismology that indicate existence of the large-magnitude vertical upflow in the near sub-surface layers. Possible issues and consequences of this inference are also discussed.
Solar supergranulation remains a mystery in spite of decades of intensive studies. Most of the papers about supergranulation deal with its surface properties. Local helioseismology provides an opportunity to look below the surface and see the vertica l structure of this convective structure. We present a concept of a (3+1)-D segmentation algorithm capable of recognising individual supergranules in a sequence of helioseismic 3-D flow maps. As an example, we applied this method to the state-of-the-art data and derived descriptive statistical properties of segmented supergranules -- typical size of 20--30 Mm, characteristic lifetime of 18.7 hours, and estimated depth of 15--20 Mm. We present preliminary results obtained on the topic of the three-dimensional structure and evolution of supergranulation. The method has a great potential in analysing the better data expected from the helioseismic
90 - Michal Svanda 2009
In a recent paper (Svanda et al., 2008, A&A 477, 285) we pointed out that, based on the tracking of Doppler features in the full-disc MDI Dopplergrams, the active regions display two dynamically different regimes. We speculated that this could be a m anifestation of the sudden change in the active regions dynamics, caused by the dynamic disconnection of sunspots from their magnetic roots as proposed by Schuessler & Rempel (2005, A&A 441, 337). Here we investigate the dynamic behaviour of the active regions recorded in the high-cadence MDI data over the last solar cycle in order to confirm the predictions in the Schuesslers & Rempels paper. We find that, after drastic reduction of the sample, which is done to avoid disturbing effects, a large fraction of active regions displays a sudden decrease in the rotation speed, which is compatible with the mechanism of the dynamic disconnection of sunspots from their parental magnetic structures.
282 - Michal Svanda 2008
In the recent papers, we introduced a method utilised to measure the flow field. The method is based on the tracking of supergranular structures. We did not precisely know, whether its results represent the flow field in the photosphere or in some su b-photospheric layers. In this paper, in combination with helioseismic data, we are able to estimate the depths in the solar convection envelope, where the detected large-scale flow field is well represented by the surface measurements. We got a clear answer to question what kind of structures we track in full-disc Dopplergrams. It seems that in the quiet Sun regions the supergranular structures are tracked, while in the regions with the magnetic field the structures of the magnetic field are dominant. This observation seems obvious, because the nature of Doppler structures is different in the magnetic regions and in the quiet Sun. We show that the large-scale flow detected by our method represents the motion of plasma in layers down to ~10 Mm. The supergranules may therefore be treated as the objects carried by the underlying large-scale velocity field.
78 - Michal Svanda 2008
The aim of this paper is to extend our previous study of the solar-cycle variations of the meridional flows and to investigate their latitudinal and longitudinal structure in the subphotospheric layer, especially their variations in magnetic regions. Helioseismology observations indicate that mass flows around active regions are dominated by inflows into those regions. On average, those local flows are more important around leading magnetic polarities of active regions than around the following polarities, and depend on the evolutionary stage of particular active regions. We present a statistical study based on MDI/SOHO observations of 1996-2002 and show that this effect explains a significant part of the cyclic change of meridional flows in near-equatorial regions, but not at higher latitudes. A different mechanism driving solar-cycle variations of the meridional flow probably operates.
97 - Michal Svanda 2007
Large-scale velocity fields in the solar photosphere remain a mystery in spite of many years of intensive studies. In this thesis, the new method of the measurements of the solar photospheric flow fields is proposed. It is based on local correlation tracking algorithm applied to full-disc dopplergrams obtained by Michelson Doppler Images (MDI) on-board the Solar and Heliospheric Observatory (SoHO). The method is tuned and tested on synthetic data, it is shown that the method is capable of measuring of horizontal velocity fields with an accuracy of 15 mps. It is also shown that the method provides the measurements comparable with time-distance local helioseismology. The method is applied to real data sets. It reproduces well known properties of solar photospheric velocity fields. Moreover, the case studies show an evidence about the influence of the changes in the flow field topology on the stability of the eruptive filament and support the theory of the dynamical disconnection of bipolar sunspots from their magnetic roots. The method has a great perspective in the future use. The meridional flux transportation speed is also studied and it is shown that the direct measurement may differ from time-distance local helioseimology in the areas occupied by the strong magnetic field. This result has an impact to the flux transport dynamo models, which use the meridional speed as the essential observational input parameter.
81 - Michal Svanda 2007
Recently, we have developed a method useful for mapping large-scale horizontal velocity fields in the solar photosphere. The method was developed, tuned and calibrated using the synthetic data. Now, we applied the method to the series of Michelson Do ppler Imager (MDI) dopplergrams covering almost one solar cycle in order to get the information about the long-term behaviour of surface flows. We have found that our method clearly reproduces the widely accepted properties of mean flow field components, such as torsional oscillations and a pattern of meridional circulation. We also performed a periodic analysis, however due to the data series length and large gaps we did not detect any significant periods. The relation between the magnetic activity influencing the mean zonal motion is studied. We found an evidence that the emergence of compact magnetic regions locally accelerates the rotation of supergranular pattern in their vicinity and that the presence of magnetic fields generally decelerates the rotation in the equatorial region. Our results show that active regions in the equatorial region emerge exhibiting a constant velocity (faster by 60 +/- 9 m/s than Carrington rate) suggesting that they emerge from the base of the surface radial shear at 0.95 R_sun, disconnect from their magnetic roots, and slow down during their evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا