ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a simple tractable pair hidden Markov model for pairwise sequence alignment that accounts for the presence of short tandem repeats. Using the framework of gain functions, we design several optimization criteria for decoding this model and describe the resulting decoding algorithms, ranging from the traditional Viterbi and posterior decoding to block-based decoding algorithms specialized for our model. We compare the accuracy of individual decoding algorithms on simulated data and find our approach superior to the classical three-state pair HMM in simulations.
Hidden Markov models (HMMs) and their variants were successfully used for several sequence annotation tasks. Traditionally, inference with HMMs is done using the Viterbi and posterior decoding algorithms. However, recently a variety of different opti mization criteria and associated computational problems were proposed. In this paper, we consider three HMM decoding criteria and prove their NP hardness. These criteria consider the set of states used to generate a certain sequence, but abstract from the exact locations of regions emitted by individual states. We also illustrate experimentally that these criteria are useful for HIV recombination detection.
Hidden Markov models are traditionally decoded by the Viterbi algorithm which finds the highest probability state path in the model. In recent years, several limitations of the Viterbi decoding have been demonstrated, and new algorithms have been dev eloped to address them citep{Kall2005,Brejova2007,Gross2007,Brown2010}. In this paper, we propose a new efficient highest expected reward decoding algorithm (HERD) that allows for uncertainty in boundaries of individual sequence features. We demonstrate usefulness of our approach on jumping HMMs for recombination detection in viral genomes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا