ترغب بنشر مسار تعليمي؟ اضغط هنا

The parallel full approximation scheme in space and time (PFASST) introduced by Emmett and Minion in 2012 is an iterative strategy for the temporal parallelization of ODEs and discretized PDEs. As the name suggests, PFASST is similar in spirit to a s pace-time FAS multigrid method performed over multiple time-steps in parallel. However, since the original focus of PFASST has been on the performance of the method in terms of time parallelism, the solution of any spatial system arising from the use of implicit or semi-implicit temporal methods within PFASST have simply been assumed to be solved to some desired accuracy completely at each sub-step and each iteration by some unspecified procedure. It hence is natural to investigate how iterative solvers in the spatial dimensions can be interwoven with the PFASST iterations and whether this strategy leads to a more efficient overall approach. This paper presents an initial investigation on the relative performance of different strategies for coupling PFASST iterations with multigrid methods for the implicit treatment of diffusion terms in PDEs. In particular, we compare full accuracy multigrid solves at each sub-step with a small fixed number of multigrid V-cycles. This reduces the cost of each PFASST iteration at the possible expense of a corresponding increase in the number of PFASST iterations needed for convergence. Parallel efficiency of the resulting methods is explored through numerical examples.
Spectral deferred correction (SDC) methods are an attractive approach to iteratively computing collocation solutions to an ODE by performing so-called sweeps with a low-order time stepping method. SDC allows to easily construct high order split metho ds where e.g. stiff terms of the ODE are treated implicitly. This requires the solution to full accuracy of multiple linear systems of equations during each sweep, e.g. with a multigrid method. In this paper, we present an inexact variant of SDC, where each solve of a linear system is replaced by a single multigrid V-cycle and thus significantly reduces the cost for each sweep. For the investigated examples, this strategy results only in a small increase of the number of required sweeps and we demonstrate that inexact spectral deferred corrections can provide a dramatic reduction of the overall number of multigrid V-cycles required to complete an SDC time step.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا