ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a review of the current state of the art of cosmological dark matter simulations, with particular emphasis on the implications for dark matter detection efforts and studies of dark energy. This review is intended both for particle physicis ts, who may find the cosmological simulation literature opaque or confusing, and for astro-physicists, who may not be familiar with the role of simulations for observational and experimental probes of dark matter and dark energy. Our work is complementary to the contribution by M. Baldi in this issue, which focuses on the treatment of dark energy and cosmic acceleration in dedicated N-body simulations. Truly massive dark matter-only simulations are being conducted on national supercomputing centers, employing from several billion to over half a trillion particles to simulate the formation and evolution of cosmologically representative volumes (cosmic scale) or to zoom in on individual halos (cluster and galactic scale). These simulations cost millions of core-hours, require tens to hundreds of terabytes of memory, and use up to petabytes of disk storage. The field is quite internationally diverse, with top simulations having been run in China, France, Germany, Korea, Spain, and the USA. Predictions from such simulations touch on almost every aspect of dark matter and dark energy studies, and we give a comprehensive overview of this connection. We also discuss the limitations of the cold and collisionless DM-only approach, and describe in some detail efforts to include different particle physics as well as baryonic physics in cosmological galaxy formation simulations, including a discussion of recent results highlighting how the distribution of dark matter in halos may be altered. We end with an outlook for the next decade, presenting our view of how the field can be expected to progress. (abridged)
We distinguish between Local Group field galaxies which may have passed through the virial volume of the Milky Way, and those which have not, via a statistical compari- son against populations of dark matter haloes in the Via Lactea II (VLII) simulat ion with known orbital histories. Analysis of VLII provides expectations for this escaped population: they contribute 13 per cent of the galactic population between 300 and 1500 kpc from the Milky Way, and hence we anticipate that about 7 of the 54 known Local Group galaxies in that distance range are likely to be Milky Way escapees. These objects can be of any mass below that of the Milky Way, and they are expected to have positive radial velocities with respect to the Milky Way. Comparison of the radius-velocity distributions of VLII populations and measurements of Local Group galaxies presents a strong likelihood that Tucana, Cetus, NGC3109, SextansA, SextansB, Antlia, NGC6822, Phoenix, LeoT, and NGC185 have passed through the Milky Way. Most of these dwarfs have a lower HI mass fraction than the majority of dwarfs lying at similar distances to either the Milky Way or M31. Indeed, several of these galaxies - especially those with lower masses - contain signatures in their morphology, star formation history and/or gas content indicative of evolution seen in simulations of satellite/parent galactic interactions. Our results offer strong support for scenarios in which dwarfs of different types form a sequence in morphology and gas content, with evolution along the sequence being driven by interaction history.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا