ترغب بنشر مسار تعليمي؟ اضغط هنا

94 - Michael Kagan 2020
Image-based jet analysis is built upon the jet image representation of jets that enables a direct connection between high energy physics and the fields of computer vision and deep learning. Through this connection, a wide array of new jet analysis te chniques have emerged. In this text, we survey jet image based classification models, built primarily on the use of convolutional neural networks, examine the methods to understand what these models have learned and what is their sensitivity to uncertainties, and review the recent successes in moving these models from phenomenological studies to real world application on experiments at the LHC. Beyond jet classification, several other applications of jet image based techniques, including energy estimation, pileup noise reduction, data generation, and anomaly detection, are discussed.
We revisit empirical Bayes in the absence of a tractable likelihood function, as is typical in scientific domains relying on computer simulations. We investigate how the empirical Bayesian can make use of neural density estimators first to use all no ise-corrupted observations to estimate a prior or source distribution over uncorrupted samples, and then to perform single-observation posterior inference using the fitted source distribution. We propose an approach based on the direct maximization of the log-marginal likelihood of the observations, examining both biased and de-biased estimators, and comparing to variational approaches. We find that, up to symmetries, a neural empirical Bayes approach recovers ground truth source distributions. With the learned source distribution in hand, we show the applicability to likelihood-free inference and examine the quality of the resulting posterior estimates. Finally, we demonstrate the applicability of Neural Empirical Bayes on an inverse problem from collider physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا