ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomically thin van der Waals crystals have recently enabled new scientific and technological breakthroughs across a variety of disciplines in materials science, nanophotonics and physics. However, non-classical photon emission from these materials h as not been achieved to date. Here we report room temperature quantum emission from hexagonal boron nitride nanoflakes. The single photon emitter exhibits a combination of superb quantum optical properties at room temperature that include the highest brightness reported in the visible part of the spectrum, narrow line width, absolute photo-stability, a short excited state lifetime and a high quantum efficiency. Density functional theory modeling suggests that the emitter is the antisite nitrogen vacancy defect that is present in single and multi-layer hexagonal boron nitride. Our results constitute the unprecedented potential of van der Waals crystals for nanophotonics, optoelectronics and quantum information processing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا