ترغب بنشر مسار تعليمي؟ اضغط هنا

The cohomology theory known as Tmf, for topological modular forms, is a universal object mapping out to elliptic cohomology theories, and its coefficient ring is closely connected to the classical ring of modular forms. We extend this to a functorial family of objects corresponding to elliptic curves with level structure and modular forms on them. Along the way, we produce a natural way to restrict to the cusps, providing multiplicative maps from Tmf with level structure to forms of K-theory. In particular, this allows us to construct a connective spectrum tmf_0(3) consistent with properties suggested by Mahowald and Rezk. This is accomplished using the machinery of logarithmic structures. We construct a sheaf of locally even-periodic elliptic cohomology theories, equipped with highly structured multiplication, on the log-etale site of the moduli of elliptic curves. Evaluating this sheaf on modular curves produces Tmf with level structure.
We calculate the integral homotopy groups of THH(l) at any prime and of THH(ko) at p=2, where l is the Adams summand of the connective complex p-local K-theory spectrum and ko is the connective real K-theory spectrum.
We compute the homotopy groups of spectra associated by a theorem of Lurie to the Shimura curves of discriminants 6, 10, and 14, beginning with a computation of integral rings of automorphic forms on these curves. As an application, we find that a ge neralized truncated Brown-Peterson spectrum BP<2> is an E_infty ring spectrum at the prime 3.
We apply an announced result of Blumberg-Cohen-Schlichtkrull to reprove (under restricted hypotheses) a theorem of Mahowald: the connective real and complex K-theory spectra are not Thom spectra.
Let M(1) be the mod 2 Moore spectrum. J.F. Adams proved that M(1) admits a minimal v_1-self map v_1^4: Sigma^8 M(1) -> M(1). Let M(1,4) be the cofiber of this self-map. The purpose of this paper is to prove that M(1,4) admits a minimal v_2-self map o f the form v_2^32: Sigma^192 M(1,4) -> M(1,4). The existence of this map implies the existence of many 192-periodic families of elements in the stable homotopy groups of spheres.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا