ترغب بنشر مسار تعليمي؟ اضغط هنا

We study 23 previously published Kepler targets to perform a consistent grid-based Bayesian asteroseismic analysis and compare our results to those obtained via the Asteroseismic Modelling Portal (AMP). We find differences in the derived stellar para meters of many targets and their uncertainties. While some of these differences can be attributed to systematic effects between stellar evolutionary models, we show that the different methodologies deliver incompatible uncertainties for some parameters. Using non-adiabatic models and our capability to measure surface effects, we also investigate the dependency of these surface effects on the stellar parameters. Our results suggest a dependence of the magnitude of the surface effect on the mixing length parameter which also, but only minimally, affects the determination of stellar parameters. While some stars in our sample show no surface effect at all, the most significant surface effects are found for stars that are close to the Suns position in the HR diagram.
We perform a Bayesian grid-based analysis of the solar l=0,1,2 and 3 p modes obtained via BiSON in order to deliver the first Bayesian asteroseismic analysis of the solar composition problem. We do not find decisive evidence to prefer either of the c ontending chemical compositions, although the revised solar abundances (AGSS09) are more probable in general. We do find indications for systematic problems in standard stellar evolution models, unrelated to the consequences of inadequate modelling of the outer layers on the higher-order modes. The seismic observables are best fit by solar models that are several hundred million years older than the meteoritic age of the Sun. Similarly, meteoritic age calibrated models do not adequately reproduce the observed seismic observables. Our results suggest that these problems will affect any asteroseismic inference that relies on a calibration to the Sun.
Asteroseismology of F-type stars has been hindered by an ambiguity in identification of their oscillation modes. The regular mode pattern that makes this task trivial in cooler stars is masked by increased linewidths. The absolute mode frequencies, e ncapsulated in the asteroseismic variable epsilon, can help solve this impasse because the values of epsilon implied by the two possible mode identifications are distinct. We find that the correct epsilon can be deduced from the effective temperature and the linewidths and we apply these methods to a sample of solar-like oscillators observed with Kepler.
No eclipse has been found in 15 days of almost continuous photometry of Alpha Leo with accuracy of about 0.0005 mag.
Highly precise and nearly uninterrupted optical photometry of the RR Lyrae star AQ Leo was obtained with the MOST (Microvariability & Oscillations of STars) satellite over 34.4 days in February-March 2005. AQ Leo was the first known double-mode RR Ly rae pulsator (RRd star). Three decades after its discovery, MOST observations have revealed that AQ Leo oscillates with at least 42 frequencies, of which 32 are linear combinations (up to the sixth order) of the radial fundamental mode and its first overtone. Evidence for period changes of these modes is found in the data. The other intrinsic frequencies may represent an additional nonradial pulsation mode and its harmonics (plus linear combinations) which warrant theoretical modeling. The unprecedented number of frequencies detected with amplitudes down to millimag precision also presents an opportunity to test nonlinear theories of mode growth and saturation in RR Lyrae pulsators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا