ترغب بنشر مسار تعليمي؟ اضغط هنا

We detail the experimental observation of the non-equilibrium many-body phenomenon prethermalization. We study the dynamics of a rapidly and coherently split one-dimensional Bose gas. An analysis based on the use of full quantum mechanical probabilit y distributions of matter wave interference contrast reveals that the system evolves towards a quasi-steady state. This state, which can be characterized by an effective temperature, is not the final thermal equilibrium state. We compare the evolution of the system to an integrable Tomonaga-Luttinger liquid model and show that the system dephases to a prethermalized state rather than undergoing thermalization towards a final thermal equilibrium state.
We experimentally study the relaxation dynamics of a coherently split one-dimensional Bose gas using matterwave interference. Measuring the full probability distributions of interference contrast reveals the prethermalization of the system to a non-t hermal steady state. To describe the evolution of noise and correlations we develop a semiclassical effective description that allows us to model the dynamics as a stochastic Ornstein-Uhlenbeck process.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا