ترغب بنشر مسار تعليمي؟ اضغط هنا

Circinus X-1 exhibited a bright X-ray flare in late 2013. Follow-up observations with Chandra and XMM-Newton from 40 to 80 days after the flare reveal a bright X-ray light echo in the form of four well-defined rings with radii from 5 to 13 arcminutes , growing in radius with time. The large fluence of the flare and the large column density of interstellar dust towards Circinus X-1 make this the largest and brightest set of rings from an X-ray light echo observed to date. By deconvolving the radial intensity profile of the echo with the MAXI X-ray lightcurve of the flare we reconstruct the dust distribution towards Circinus X-1 into four distinct dust concentrations. By comparing the peak in scattering intensity with the peak intensity in CO maps of molecular clouds from the Mopra Southern Galactic Plane CO Survey we identify the two innermost rings with clouds at radial velocity ~ -74 km/s and ~ -81 km/s, respectively. We identify a prominent band of foreground photoelectric absorption with a lane of CO gas at ~ -32 km/s. From the association of the rings with individual CO clouds we determine the kinematic distance to Circinus X-1 to be $D_{Cir X-1} = 9.4^{+0.8}_{-1.0}$ kpc. This distance rules out earlier claims of a distance around 4 kpc, implies that Circinus X-1 is a frequent super-Eddington source, and places a lower limit of $Gamma gtrsim 22$ on the Lorentz factor and an upper limit of $theta_{jet} lesssim 3^{circ}$ on the jet viewing angle.
We present observations of the first ten degrees of longitude in the Mopra carbon monoxide (CO) survey of the southern Galactic plane (Burton et al. 2013), covering Galactic longitude l = 320-330{deg} and latitude b = $pm$0.5{deg}, and l = 327-330{de g}, b = +0.5-1.0{deg}. These data have been taken at 35 arc sec spatial resolution and 0.1 km/s spectral resolution, providing an unprecedented view of the molecular clouds and gas of the southern Galactic plane in the 109-115 GHz J = 1-0 transitions of 12CO, 13CO, C18O and C17O. Together with information about the noise statistics from the Mopra telescope, these data can be retrieved from the Mopra CO website and the CSIRO-ATNF data archive.
The G333 giant molecular cloud contains a few star clusters and H II regions, plus a number of condensations currently forming stars. We have mapped 13 of these sources with the appearance of young stellar objects (YSOs) with the Spitzer Infrared Spe ctrograph in the SL, SH, and LH modules (5-36 micron). We use these spectra plus available photometry and images to characterize the YSOs. The spectral energy distributions (SEDs) of all sources peak between 35 and 110 micron, thereby showing their young age. The objects are divided into two groups: YSOs associated with extended emission in IRAC band 2 at 4.5 micron (`outflow sources) and YSOs that have extended emission in all IRAC bands peaking at the longest wavelengths (`red sources). The two groups of objects have distinctly different spectra: All the YSOs associated with outflows show evidence of massive envelopes surrounding the protostar because the spectra show deep silicate absorption features and absorption by ices at 6.0, 6.8, and 15.2 micron. We identify these YSOs with massive envelopes cool enough to contain ice-coated grains as the `bloated protostars in the models of Hosokawa et al. All spectral maps show ionized forbidden lines and PAH emission features. For four of the red sources, these lines are concentrated to the centres of the maps, from which we infer that these YSOs are the source of ionizing photons. Both types of objects show evidence of shocks, with most of the outflow sources showing a line of [S I] in the outflows and two of the red sources showing the more highly excited [Ne III] and [S IV] lines in outflow regions at some distance from the YSOs. The 4.5 micron emission seen in the IRAC band 2 images of the outflow sources is not due to H2 lines, which are too faint in the 5-10 micron wavelength region to be as strong as is needed to account for the IRAC band 2 emission.
100 - Janet P. Simpson 2009
Massive young stellar objects (YSOs), like low-mass YSOs, appear to be surrounded by optically thick envelopes and/or disks and have regions, often bipolar, that are seen in polarized scattered light at near-infrared wavelengths. We are using the 0.2 spatial resolution of NICMOS on Hubble Space Telescope to examine the structure of the disks and outflow regions of massive YSOs in star-forming regions within a few kpc of the Sun. Here we report on 2 micron polarimetry of NGC 6334 V and S255 IRS1. NGC 6334 V consists of a double-lobed bright reflection nebula seen against a dark region, probably an optically thick molecular cloud. Our polarization measurements show that the illuminating star lies ~ 2 south of the line connecting the two lobes; we do not detect this star at 2 micron, but there are a small radio source and a mid-infrared source at this location. S255 IRS1 consists of two YSOs (NIRS1 and NIRS3) with overlapping scattered light lobes and luminosities corresponding to early B stars. Included in IRS1 is a cluster of stars from whose polarization we determine the local magnetic field direction. Neither YSO has its scattered light lobes aligned with this magnetic field. The line connecting the scattered light lobes of NIRS1 is twisted symmetrically around the star; the best explanation is that the star is part of a close binary and the outflow axis of NIRS1 is precessing as a result of non-coplanar disk and orbit. The star NIRS3 is also offset from the line connecting its two scattered light lobes. We suggest that all three YSOs show evidence of episodic ejection of material as they accrete from dense, optically thick envelopes.
We present near- and mid-infrared observations on the shock-cloud interaction region in the northern part of the supernova remnant HB21, performed with the InfraRed Camera (IRC) aboard AKARI satellite and the Wide InfraRed Camera (WIRC) at the Paloma r 5 m telescope. The IRC 7 um (S7), 11 um (S11), and 15 um (L15) band images and the WIRC H2 v = 1 -> 0 S(1) 2.12 um image show similar shock-cloud interaction features. We chose three representative regions, and analyzed their IRC emissions through comparison with H2 line emissions of several shock models. The IRC colors are well explained by the thermal admixture model of H2 gas--whose infinitesimal H2 column density has a power-law relation with the temperature T, dN ~ T^-b dT--with n(H2) ~ 10^3 cm^-3, b ~ 3, and N(H2 ;T > 100K) ~ 3x10^20 cm^-2. The derived b value may be understood by a bow shock picture, whose shape is cycloidal (cuspy) rather than paraboloidal. However, this picture raises another issue that the bow shocks must reside within ~0.01 pc size-scale, smaller than the theoretically expected. Instead, we conjectured a shocked clumpy interstellar medium picture, which may avoid the sizescale issue while explaining the similar model parameters. The observed H2 v = 1 -> 0 S(1) intensities are a factor of ~17 - 33 greater than the prediction from the power-law admixture model. This excess may be attributed to either an extra component of hot H2 gas or to the effects of collisions with hydrogen atoms, omitted in our power-law admixture model, both of which would increase the population in the v = 1 level of H2.
We describe observations with the Mopra radiotelescope designed to assess the feasibility of the H$_2$O maser southern Galactic plane survey (HOPS). We mapped two one-square-degree regions along the Galactic plane using the new 12 mm receiver and the UNSW Mopra spectrometer (MOPS). We covered the entire spectrum between 19.5 and 27.5 GHz using this setup with the main aims of finding out which spectral lines can be detected with a quick mapping survey. We report on detected emission from H$_2$O masers, NH$_3$ inversion transitions (1,1), (2,2) and (3,3), HC$_3$N (3-2), as well as several radio recombination lines.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا