ترغب بنشر مسار تعليمي؟ اضغط هنا

We simulate the localized surface plasmon resonances of an Au nanoparticle within tunneling proximity of a Au substrate and demonstrate that the modes may be identified with those responsible for light emission from a scanning tunneling microscope. R elative to the modes of an isolated nanoparticle these modes show significant red-shifting, extending further into the infrared with increasing radius, primarily due to a proximity-induced lowering of the effective bulk plasmon frequency. Spatial mapping of the field enhancement factor shows an oscillatory variation of the field, absent in the case of a dielectric substrate; also the degree of localization of the modes, and thus the resolution achievable electromagnetically, is shown to depend primarily on the nanoparticle radius with only a weak dependence on wavelength.
Light emission spectrum from a scanning tunnelling microscope (LESTM) is investigated as a function of relative humidity and shown to be a novel and sensitive means for probing the growth and properties of a water meniscus in the nm-scale. An empiric al model of the light emission process is formulated and applied successfully to replicate the decay in light intensity and spectral changes observed with increasing relative humidity. The modelling indicates a progressive water filling of the tip-sample junction with increasing humidity or, more pertinently, of the volume of the localized surface plasmons responsible for light emission; it also accounts for the effect of asymmetry in structuring of the water molecules with respect to polarity of the applied bias. This is juxtaposed with the case of a non-polar liquid in the tip-sample nano cavity where no polarity dependence of the light emission is observed. In contrast to the discrete detection of the presence/absence of water bridge in other scanning probe experiments by measurement of the feedback parameter for instrument control LESTM offers a means of continuously monitoring the development of the water bridge with sub-nm sensitivity. The results are relevant to applications such as dip-pen nanolithography and electrochemical scanning probe microscopy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا