ترغب بنشر مسار تعليمي؟ اضغط هنا

98 - Shouleh Nikzad 2011
We have used Molecular Beam Epitaxy (MBE)-based delta doping technology to demonstrate near 100% internal quantum efficiency (QE) on silicon electron-multiplied Charge Coupled Devices (EMCCDs) for single photon counting detection applications. Furthe rmore, we have used precision techniques for depositing antireflection (AR) coatings by employing Atomic Layer Deposition (ALD) and demonstrated over 50% external QE in the far and near-ultraviolet in megapixel arrays. We have demonstrated that other device parameters such as dark current are unchanged after these processes. In this paper, we report on these results and briefly discuss the techniques and processes employed.
We report on the development of coatings for a CCD detector optimized for use in a fixed dispersion UV spectrograph. Due to the rapidly changing index of refraction of Si, single layer broadband anti-reflection coatings are not suitable to increase q uantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a CCD detector with theoretical quantum efficiencies (QE) of greater than 60% at wavelengths from 120 to 300nm. This high efficiency may be reached by coating a backside illuminated, thinned, delta-doped CCD with a series of thin film anti-reflection coatings. The materials tested include MgF2 (optimized for highest performance from 120-150nm), SiO2 (150-180nm), Al2O3(180-240nm), MgO (200-250nm), and HfO2 (240-300nm). A variety of deposition techniques were tested and a selection of coatings which minimized reflectance on a Si test wafer were applied to live devices. We also discuss future uses and improvements, including graded and multi-layer coatings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا