ترغب بنشر مسار تعليمي؟ اضغط هنا

During the 2011 run of the LHC there was a significant measured temperature increase in the LHC Injection Kicker Magnets (MKI) during operation with 50ns bunch spacing. This was due to increased beam-induced heating of the magnet due to beam impedanc e. Due to concerns about future heating with the increased total intensity to nominal and ultimate luminosities a review of the impedance reduction techniques within the magnet was required. A number of new beam screen designs are proposed and their impedance evaluated. Heating estimates are also given with a particular attention paid to future intensity upgrades to ultimate parameters.
Fast kicker magnets are used to inject beam into and eject beam out of the CERN accelerator rings. These kickers are generally transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the yoke can provoke significant beam induced heating, especially for high intensities. In addition the impedance may contribute to beam instabilities. The results of longitudinal and transverse impedance measurements, for various kicker magnets, are presented and compared with analytical calculations: in addition predictions from a numerical analysis are discussed.
Many plasmas of interest to the astrophysical and fusion communities are weakly collisional. In such plasmas, small scales can develop in the distribution of particle velocities, potentially affecting observable quantities such as turbulent fluxes. C onsequently, it is necessary to monitor velocity space resolution in gyrokinetic simulations. In this paper, we present a set of computationally efficient diagnostics for measuring velocity space resolution in gyrokinetic simulations and apply them to a range of plasma physics phenomena using the continuum gyrokinetic code GS2. For the cases considered here, it is found that the use of a collisionality at or below experimental values allows for the resolution of plasma dynamics with relatively few velocity space grid points. Additionally, we describe implementation of an adaptive collision frequency which can be used to improve velocity space resolution in the collisionless regime, where results are expected to be independent of collision frequency.
90 - Michael Barnes 2009
To faithfully simulate ITER and other modern fusion devices, one must resolve electron and ion fluctuation scales in a five-dimensional phase space and time. Simultaneously, one must account for the interaction of this turbulence with the slow evolut ion of the large-scale plasma profiles. Because of the enormous range of scales involved and the high dimensionality of the problem, resolved first-principles global simulations are very challenging using conventional (brute force) techniques. In this thesis, the problem of resolving turbulence is addressed by developing velocity space resolution diagnostics and an adaptive collisionality that allow for the confident simulation of velocity space dynamics using the approximate minimal necessary dissipation. With regard to the wide range of scales, a new approach has been developed in which turbulence calculations from multiple gyrokinetic flux tube simulations are coupled together using transport equations to obtain self-consistent, steady-state background profiles and corresponding turbulent fluxes and heating. This approach is embodied in a new code, Trinity, which is capable of evolving equilibrium profiles for multiple species, including electromagnetic effects and realistic magnetic geometry, at a fraction of the cost of conventional global simulations. Furthermore, an advanced model physical collision operator for gyrokinetics has been derived and implemented, allowing for the study of collisional turbulent heating, which has not been extensively studied. To demonstrate the utility of the coupled flux tube approach, preliminary results from Trinity simulations of the core of an ITER plasma are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا