ترغب بنشر مسار تعليمي؟ اضغط هنا

We present 4D-Net, a 3D object detection approach, which utilizes 3D Point Cloud and RGB sensing information, both in time. We are able to incorporate the 4D information by performing a novel dynamic connection learning across various feature represe ntations and levels of abstraction, as well as by observing geometric constraints. Our approach outperforms the state-of-the-art and strong baselines on the Waymo Open Dataset. 4D-Net is better able to use motion cues and dense image information to detect distant objects more successfully.
Humans learn to imitate by observing others. However, robot imitation learning generally requires expert demonstrations in the first-person view (FPV). Collecting such FPV videos for every robot could be very expensive. Third-person imitation learnin g (TPIL) is the concept of learning action policies by observing other agents in a third-person view (TPV), similar to what humans do. This ultimately allows utilizing human and robot demonstration videos in TPV from many different data sources, for the policy learning. In this paper, we present a TPIL approach for robot tasks with egomotion. Although many robot tasks with ground/aerial mobility often involve actions with camera egomotion, study on TPIL for such tasks has been limited. Here, FPV and TPV observations are visually very different; FPV shows egomotion while the agent appearance is only observable in TPV. To enable better state learning for TPIL, we propose our disentangled representation learning method. We use a dual auto-encoder structure plus representation permutation loss and time-contrastive loss to ensure the state and viewpoint representations are well disentangled. Our experiments show the effectiveness of our approach.
In this paper we address the problem of automatically discovering atomic actions in unsupervised manner from instructional videos. Instructional videos contain complex activities and are a rich source of information for intelligent agents, such as, a utonomous robots or virtual assistants, which can, for example, automatically `read the steps from an instructional video and execute them. However, videos are rarely annotated with atomic activities, their boundaries or duration. We present an unsupervised approach to learn atomic actions of structured human tasks from a variety of instructional videos. We propose a sequential stochastic autoregressive model for temporal segmentation of videos, which learns to represent and discover the sequential relationship between different atomic actions of the task, and which provides automatic and unsupervised self-labeling for videos. Our approach outperforms the state-of-the-art unsupervised methods with large margins. We will open source the code.
In this paper, we introduce a novel visual representation learning which relies on a handful of adaptively learned tokens, and which is applicable to both image and video understanding tasks. Instead of relying on hand-designed splitting strategies t o obtain visual tokens and processing a large number of densely sampled patches for attention, our approach learns to mine important tokens in visual data. This results in efficiently and effectively finding a few important visual tokens and enables modeling of pairwise attention between such tokens, over a longer temporal horizon for videos, or the spatial content in images. Our experiments demonstrate strong performance on several challenging benchmarks for both image and video recognition tasks. Importantly, due to our tokens being adaptive, we accomplish competitive results at significantly reduced compute amount.
In this paper we address the problem of automatically discovering atomic actions in unsupervised manner from instructional videos, which are rarely annotated with atomic actions. We present an unsupervised approach to learn atomic actions of structur ed human tasks from a variety of instructional videos based on a sequential stochastic autoregressive model for temporal segmentation of videos. This learns to represent and discover the sequential relationship between different atomic actions of the task, and which provides automatic and unsupervised self-labeling.
Standard methods for video recognition use large CNNs designed to capture spatio-temporal data. However, training these models requires a large amount of labeled training data, containing a wide variety of actions, scenes, settings and camera viewpoi nts. In this paper, we show that current convolutional neural network models are unable to recognize actions from camera viewpoints not present in their training data (i.e., unseen view action recognition). To address this, we develop approaches based on 3D representations and introduce a new geometric convolutional layer that can learn viewpoint invariant representations. Further, we introduce a new, challenging dataset for unseen view recognition and show the approaches ability to learn viewpoint invariant representations.
In this paper, we introduce Coarse-Fine Networks, a two-stream architecture which benefits from different abstractions of temporal resolution to learn better video representations for long-term motion. Traditional Video models process inputs at one ( or few) fixed temporal resolution without any dynamic frame selection. However, we argue that, processing multiple temporal resolutions of the input and doing so dynamically by learning to estimate the importance of each frame can largely improve video representations, specially in the domain of temporal activity localization. To this end, we propose (1) Grid Pool, a learned temporal downsampling layer to extract coarse features, and, (2) Multi-stage Fusion, a spatio-temporal attention mechanism to fuse a fine-grained context with the coarse features. We show that our method outperforms the state-of-the-arts for action detection in public datasets including Charades with a significantly reduced compute and memory footprint. The code is available at https://github.com/kkahatapitiya/Coarse-Fine-Networks
Satisfying the high computation demand of modern deep learning architectures is challenging for achieving low inference latency. The current approaches in decreasing latency only increase parallelism within a layer. This is because architectures typi cally capture a single-chain dependency pattern that prevents efficient distribution with a higher concurrency (i.e., simultaneous execution of one inference among devices). Such single-chain dependencies are so widespread that even implicitly biases recent neural architecture search (NAS) studies. In this visionary paper, we draw attention to an entirely new space of NAS that relaxes the single-chain dependency to provide higher concurrency and distribution opportunities. To quantitatively compare these architectures, we propose a score that encapsulates crucial metrics such as communication, concurrency, and load balancing. Additionally, we propose a new generator and transformation block that consistently deliver superior architectures compared to current state-of-the-art methods. Finally, our preliminary results show that these new architectures reduce the inference latency and deserve more attention.
We create a family of powerful video models which are able to: (i) learn interactions between semantic object information and raw appearance and motion features, and (ii) deploy attention in order to better learn the importance of features at each co nvolutional block of the network. A new network component named peer-attention is introduced, which dynamically learns the attention weights using another block or input modality. Even without pre-training, our models outperform the previous work on standard public activity recognition datasets with continuous videos, establishing new state-of-the-art. We also confirm that our findings of having neural connections from the object modality and the use of peer-attention is generally applicable for different existing architectures, improving their performances. We name our model explicitly as AssembleNet++. The code will be available at: https://sites.google.com/corp/view/assemblenet/
Learning to represent videos is a very challenging task both algorithmically and computationally. Standard video CNN architectures have been designed by directly extending architectures devised for image understanding to include the time dimension, u sing modules such as 3D convolutions, or by using two-stream design to capture both appearance and motion in videos. We interpret a video CNN as a collection of multi-stream convolutional blocks connected to each other, and propose the approach of automatically finding neural architectures with better connectivity and spatio-temporal interactions for video understanding. This is done by evolving a population of overly-connected architectures guided by connection weight learning. Architectures combining representations that abstract different input types (i.e., RGB and optical flow) at multiple temporal resolutions are searched for, allowing different types or sources of information to interact with each other. Our method, referred to as AssembleNet, outperforms prior approaches on public video datasets, in some cases by a great margin. We obtain 58.6% mAP on Charades and 34.27% accuracy on Moments-in-Time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا