ترغب بنشر مسار تعليمي؟ اضغط هنا

The Apache Point Observatory Galactic Evolution Experiment has measured the stellar velocities of red giant stars in the inner Milky Way. We confirm that the line of sight velocity distributions (LOSVDs) in the mid-plane exhibit a second peak at high velocities, whereas those at |b| = 2degrees do not. We use a high resolution simulation of a barred galaxy, which crucially includes gas and star formation, to guide our interpretation of the LOSVDs. We show that the data are fully consistent with the presence of a thin, rapidly rotating, nuclear disk extending to ~1 kpc. This nuclear disk is orientated perpendicular to the bar and is likely to be composed of stars on x2 orbits. The gas in the simulation is able to fall onto such orbits, leading to stars populating an orthogonal disk.
New spectroscopic surveys offer the promise of consistent stellar parameters and abundances (stellar labels) for hundreds of thousands of stars in the Milky Way: this poses a formidable spectral modeling challenge. In many cases, there is a sub-set o f reference objects for which the stellar labels are known with high(er) fidelity. We take advantage of this with The Cannon, a new data-driven approach for determining stellar labels from spectroscopic data. The Cannon learns from the known labels of reference stars how the continuum-normalized spectra depend on these labels by fitting a flexible model at each wavelength; then, The Cannon uses this model to derive labels for the remaining survey stars. We illustrate The Cannon by training the model on only 542 stars in 19 clusters as reference objects, with Teff, log g and [Fe/H] as the labels, and then applying it to the spectra of 56,000 stars from APOGEE DR10. The Cannon is very accurate. Its stellar labels compare well to the stars for which APOGEE pipeline (ASPCAP) labels are provided in DR10, with rms differences that are basically identical to the stated ASPCAP uncertainties. Beyond the reference labels, The Cannon makes no use of stellar models nor any line-list, but needs a set of reference objects that span label-space. The Cannon performs well at lower signal-to-noise, as it delivers comparably good labels even at one ninth the APOGEE observing time. We discuss the limitations of The Cannon and its future potential, particularly, to bring different spectroscopic surveys onto a consistent scale of stellar labels.
We present an abundance analysis of eight potential member stars of the old Galactic bulge globular cluster NGC6522. The same stars have previously been studied by Chiappini et al. (2011), who found very high abundances of the slow neutron capture el ements compared with other clusters and field stars of similar metallicity, which they interpreted as reflecting nucleosynthesis in rapidly rotating, massive Population III stars. In contrast to their analysis, we do not find any unusual enhancements of the neutron capture elements Sr, Y, Ba and Eu and conclude that previous claims result mainly from not properly accounting for blending lines. Instead we find NGC6522 to be an unremarkable globular cluster with comparable abundance trends to other Galactic globular clusters at the same metallicity ([Fe/H] = -1.15 +/- 0.16). The stars are also chemically similar to halo and bulge field stars at the same metallicity, spanning a small range in [Y/Ba] and with normal {alpha}-element abundances. We thus find no observational evidence for any chemical signatures of rapidly rotating Population III stars in NGC 6522.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا