ترغب بنشر مسار تعليمي؟ اضغط هنا

A granular material is observed to flow under the Coulomb yield criterion as soon as this criterion is satisfied in a remote but contiguous region of space. We investigate this non-local effect using discrete element simulations, in a geometry simila r, in spirit, to the experiment of Reddy et al. (Phys. Rev. Lett., 106 (2011) 108301): a micro-rheometer is introduced to determine the influence of a distant shear band on the local rheological behaviour. The numerical simulations recover the dominant features of this experiment: the local shear rate is proportional to that in the shear band and decreases (roughly) exponentially with the distance to the yield conditions. The numerical results are in quantitative agreement with the predictions of the non-local rheology proposed by (Phys. Rev. Lett., 111 (2013) 238301) and derived from a gradient expansion of the rheology $mu[I]$. The consequences of these findings for the dynamical mechanisms controlling non-locality are finally discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا