ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider existential rules (aka Datalog+) as a formalism for specifying ontologies. In recent years, many classes of existential rules have been exhibited for which conjunctive query (CQ) entailment is decidable. However, most of these classes can not express transitivity of binary relations, a frequently used modelling construct. In this paper, we address the issue of whether transitivity can be safely combined with decidable classes of existential rules. First, we prove that transitivity is incompatible with one of the simplest decidable classes, namely aGRD (acyclic graph of rule dependencies), which clarifies the landscape of `finite expansion sets of rules. Second, we show that transitivity can be safely added to linear rules (a subclass of guarded rules, which generalizes the description logic DL-Lite-R) in the case of atomic CQs, and also for general CQs if we place a minor syntactic restriction on the rule set. This is shown by means of a novel query rewriting algorithm that is specially tailored to handle transitivity rules. Third, for the identified decidable cases, we pinpoint the combined and data complexities of query entailment.
This paper investigates the impact of query topology on the difficulty of answering conjunctive queries in the presence of OWL 2 QL ontologies. Our first contribution is to clarify the worst-case size of positive existential (PE), non-recursive Datal og (NDL), and first-order (FO) rewritings for various classes of tree-like conjunctive queries, ranging from linear queries to bounded treewidth queries. Perhaps our most surprising result is a superpolynomial lower bound on the size of PE-rewritings that holds already for linear queries and ontologies of depth 2. More positively, we show that polynomial-size NDL-rewritings always exist for tree-shaped queries with a bounded number of leaves (and arbitrary ontologies), and for bounded treewidth queries paired with bounded depth ontologies. For FO-rewritings, we equate the existence of polysize rewritings with well-known problems in Boolean circuit complexity. As our second contribution, we analyze the computational complexity of query answering and establish tractability results (either NL- or LOGCFL-completeness) for a range of query-ontology pairs. Combining our new results with those from the literature yields a complete picture of the succinctness and complexity landscapes for the considered classes of queries and ontologies.
Two-way regular path queries (2RPQs) have received increased attention recently due to their ability to relate pairs of objects by flexibly navigating graph-structured data. They are present in property paths in SPARQL 1.1, the new standard RDF query language, and in the XML query language XPath. In line with XPath, we consider the extension of 2RPQs with nesting, which allows one to require that objects along a path satisfy complex conditions, in turn expressed through (nested) 2RPQs. We study the computational complexity of answering nested 2RPQs and conjunctions thereof (CN2RPQs) in the presence of domain knowledge expressed in description logics (DLs). We establish tight complexity bounds in data and combined complexity for a variety of DLs, ranging from lightweight DLs (DL-Lite, EL) up to highly expressive ones. Interestingly, we are able to show that adding nesting to (C)2RPQs does not affect worst-case data complexity of query answering for any of the considered DLs. However, in the case of lightweight DLs, adding nesting to 2RPQs leads to a surprising jump in combined complexity, from P-complete to Exp-complete.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا