ترغب بنشر مسار تعليمي؟ اضغط هنا

Despite first being detected in the 1970s, surprisingly little is known about the OH main line maser population in the nearby starburst galaxy M82. Sometimes referred to as kilomasers, they have isotropic luminosities intermediate between Galactic ma sers and those found in more distant megamasers. Several observations have been carried by this group over the last ten years in an attempt to get a better handle on their nature. High velocity resolution VLA observations in 2006 showed that almost all of the maser spots, distributed across the central arcminute of the galaxy, were apparently coincident with background continuum features, and a handful displayed multiple velocity components. The majority of those with velocity structure are located on a blue-shifted arc in the pv-plane, spatially located on an arc northward of the peculiar source known as B41.95+57.5. Now, new results from high spatial and spectral resolution observations with the EVN have resolved several of these masers into multiple spatial components for the first time. The maser emission is compared with known continuum sources in the galaxy, and we conclude that at least some of the maser emission is from high-gain maser action.
We present first results from electronic Multi-Element Remotely Linked Interferometer Network (e-MERLIN) and electronic European VLBI Network (e-EVN) observations of a small sample of ultra-steep spectrum radio sources, defined as those sources with a spectral index alpha < -1.4 between 74 MHz and 325 MHz, which are unresolved on arcsecond scales. Such sources are currently poorly understood and a number of theories as to their origin have been proposed in the literature. The new observations described here have resulted in the first detection of two of these sources at milliarcsecond scales and show that a significant fraction of ultra-steep spectrum sources may have compact structures which can only be studied at the high resolution available with very long baseline interferometry (VLBI).
One of our closest neighbours, the Andromeda Galaxy (M31) has been the subject of numerous large area studies across the entire spectrum, but so far full-disk radio surveys have been conducted only at low resolution. The new wide-field capabilities o f the DiFX software correlator present the possibility of imaging the entire primary beam of a VLBI array, thus enabling a high resolution wide-field study of the entire galaxy. Using the VLBA and EVN, pilot observations of M31 have been carried out with the aim of using these new wide-field techniques to characterise the population of compact components at VLBI resolution both within and behind one of our nearest neighbours. This contribution describes the observations carried out, the preliminary processing and first results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا