ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss ensemble averages of two-dimensional conformal field theories associated with an arbitrary indefinite lattice with integral quadratic form $Q$. We provide evidence that the holographic dual after the ensemble average is the three-dimension al Abelian Chern-Simons theory with kinetic term determined by $Q$. The resulting partition function can be written as a modular form, expressed as a sum over the partition functions of Chern-Simons theories on lens spaces. For odd lattices, the dual bulk theory is a spin Chern-Simons theory, and we identify several novel phenomena in this case. We also discuss the holographic duality prior to averaging in terms of Maxwell-Chern-Simons theories.
We present an explicit matrix algebra regularization of the algebra of volume-preserving diffeomorphisms of the $n$-torus. That is, we approximate the corresponding classical Nambu brackets using $mathfrak{sl}(N^{lceiltfrac{n}{2}rceil},mathbb{C})$-ma trices equipped with the finite bracket given by the completely anti-symmetrized matrix product, such that the classical brackets are retrieved in the $Nrightarrow infty$ limit. We then apply this approximation to the super $4$-brane in $9$ dimensions and give a regularized action in analogy with the matrix regularization of the supermembrane. This action exhibits a reduced gauge symmetry that we discuss from the viewpoint of $L_infty$-algebras in a slight generalization to the construction of Lie $2$-algebras from Bagger-Lambert $3$-algebras.
We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symme try. By embedding four-dimensional Chern-Simons theory in a partial twist of the five-dimensional maximally supersymmetric Yang-Mills theory on a manifold with corners, we argue that this three-dimensional Toda theory is dual to a two-dimensional topological sigma model with A-branes on the moduli space of solutions to the Bogomolny equations. This furnishes a novel 3d-2d correspondence, which, among other mathematical implications, also reveals that modules of the 3d W-algebra are modules for the quantized algebra of certain holomorphic functions on the Bogomolny moduli space.
167 - Meer Ashwinkumar 2020
We study four-dimensional Chern-Simons theory on $D times mathbb{C}$ (where $D$ is a disk), which is understood to describe rational solutions of the Yang-Baxter equation from the work of Costello, Witten and Yamazaki. We find that the theory is dual to a boundary theory, that is a three-dimensional analogue of the two-dimensional chiral WZW model. This boundary theory gives rise to a current algebra that turns out to be an analytically-continued toroidal Lie algebra. In addition, we show how certain bulk correlation functions of two and three Wilson lines can be captured by boundary correlation functions of local operators in the three-dimensional WZW model. In particular, we reproduce the leading and subleading nontrivial contributions to the rational R-matrix purely from the boundary theory.
We explain how, starting with a stack of D4-branes ending on an NS5-brane in type IIA string theory, one can, via T-duality and the topological-holomorphic nature of the relevant worldvolume theories, relate (i) the lattice models realized by Costell os 4d Chern-Simons theory, (ii) links in 3d analytically-continued Chern-Simons theory, (iii) the quantum geometric Langlands correspondence realized by Kapustin-Witten using 4d N = 4 gauge theory and its quantum group modification, and (iv) the Gaitsgory-Lurie conjecture relating quantum groups/affine Kac-Moody algebras to Whittaker D-modules/W-algebras. This furnishes, purely physically via branes in string theory, a novel bridge between the mathematics of integrable systems, geometric topology, geometric representation theory, and quantum algebras.
Generalizing our ideas in [arXiv:1006.3313], we explain how topologically-twisted N=2 gauge theory on a four-manifold with boundary, will allow us to furnish purely physical proofs of (i) the Atiyah-Floer conjecture, (ii) Munozs theorem relating quan tum and instanton Floer cohomology, (iii) their monopole counterparts, and (iv) their higher rank generalizations. In the case where the boundary is a Seifert manifold, one can also relate its instanton Floer homology to modules of an affine algebra via a 2d A-model with target the based loop group. As an offshoot, we will be able to demonstrate an action of the affine algebra on the quantum cohomology of the moduli space of flat connections on a Riemann surface, as well as derive the Verlinde formula.
We elucidate how integrable lattice models described by Costellos 4d Chern-Simons theory can be realized via a stack of D4-branes ending on an NS5-brane in type IIA string theory, with D0-branes on the D4-brane worldvolume sourcing a meromorphic RR 1 -form, and fundamental strings forming the lattice. This provides us with a nonperturbative integration cycle for the 4d Chern-Simons theory, and by applying T- and S-duality, we show how the R-matrix, the Yang-Baxter equation and the Yangian can be categorified, that is, obtained via the Hilbert space of a 6d gauge theory.
We describe supersymmetric A-branes and B-branes in open N=(2,2) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description as branes in gauged Landau-Ginzburg models with neutral matter. We then study correlation functions in the topological A-twisted version of the GNLSM, and identify their values with open Hamiltonian Gromov-Witten invariants. Supersymmetry breaking can occur in the A-twisted GNLSM due to nonperturbative open symplectic vortices, and we canonically BRST quantize the mirror theory to analyze this phenomenon.
We study the ground states and left-excited states of the A_{k-1} N=(2,0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP^1 with target space the based loop group of SU( k). The ground states, described by L^2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا