ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a scale invariant extension of the standard model (SM) with a combined breaking of conformal and electroweak symmetry in a strongly interacting hidden $SU(n_c)$ gauge sector with $n_f$ vector-like hidden fermions. The (pseudo) Nambu-Golds tone bosons that arise due to dynamical chiral symmetry breaking are dark matter (DM) candidates. We focus on $n_f=n_c=3$, where $SU(3)$ is the largest symmetry group of hidden flavor which can be explicitly broken into either $U(1) times U(1)$ or $SU(2)times U(1)$. We study DM properties and discuss consistent parameter space for each case. Because of different mechanisms of DM annihilation the consistent parameter space in the case of $SU(2)times U(1)$ is significantly different from that of $SU(3)$ if the hidden fermions have a SM $U(1)_Y$ charge of $O(1)$.
We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming unnatural hierarchy among the mass scales . Tiny neutrino masses are generated at the three loop level due to the exact $Z_2$ symmetry, by which stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments.
73 - Mayumi Aoki 2008
We study bounds on Higgs boson masses from perturbative unitarity in the Georgi-Machacek model, whose Higgs sector is composed of a scalar isospin doublet, a real and a complex isospin triplet fields. This model can be compatible with the electroweak precision data without fine tuning because of the imposed global SU(2)_R symmetry in the Higgs potential, by which the electroweak rho parameter is unity at the tree level. All possible two-body elastic-scattering channels are taken into account to evaluate the S-wave amplitude matrix, and then the condition of perturbative unitarity is imposed on the eigenvalues to obtain constraint on the Higgs parameters. Masses of all scalar bosons turn out to be bounded from above, some of which receive more strict upper bounds as compared to that in the standard model (712 GeV). In particular, the upper bound of the lightest scalar boson, whatever it would be, is about 270 GeV.
Doubly charged Higgs bosons (H^++) are a distinctive signature of the Higgs Triplet Model of neutrino mass generation. If H^++ is relatively light (m_{H^++} < 400GeV) it will be produced copiously at the LHC, which could enable precise measurements o f the branching ratios of the decay channels H^++ to l_i l_j. Such branching ratios are determined solely by the neutrino mass matrix which allows the model to be tested at the LHC. We quantify the dependence of the leptonic branching ratios on the absolute neutrino mass and Majorana phases, and present the permitted values for the channels ee, emu and mumu. It is shown that precise measurements of these three branching ratios are sufficient to extract information on the neutrino mass spectrum and probe the presence of CP violation from Majorana phases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا