ترغب بنشر مسار تعليمي؟ اضغط هنا

As a model for describing finite-size effects in topological insulator thin films, we study a one-dimensional (1D) effective model of a topological insulator (TI). Using this effective 1D model, we reveal the precise correspondence between the spatia l profile of the surface wave function, and the dependence of the finite-size energy gap on the thickness (Lx) of the film. We solve the boundary problem both in the semi-infinite and slab geometries to show that the Lx-dependence of the size gap is a direct measure of the amplitude of the surface wave function at the depth of x=Lx+1 [here, the boundary condition is chosen such that the wave function vanishes at x=0]. Depending on the parameters, the edge state function shows either a damped oscillation (in the TI-oscillatory region of FIG. 2, or becomes overdamped (ibid., in the TI-overdamped phase). In the original 3D bulk TI, an asymmetry in the spectrum of valence and conduction bands is omnipresent. Here, we demonstrate by tuning this asymmetry one can drive a crossover from the TI-oscillatory to the TI-overdamped phase.
The non-trivialness of a topological insulator (TI) is characterized either by a bulk topological invariant or by the existence of a protected metallic surface state. Yet, in realistic samples of finite size this non-trivialness does not necessarily guarantee the gaplessness of the surface state. Depending on the geometry and on the topological indices, a finite-size energy gap of different nature can appear, and correspondingly, exhibits various scaling behaviors of the gap. The spin-to-surface locking provides one of such gap-opening mechanisms, resulting in a power-law scaling of the energy gap. Weak and strong TIs show different degrees of sensitivity to the geometry of the sample. As a noteworthy example, a strong TI nanowire of a rectangular prism shape is shown to be more gapped than that of a weak TI of precisely the same geometry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا