ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a route for direct growth of boron nitride via a polyborazylene to h-BN conversion process. This two-step growth process ultimately leads to a >25x reduction in the RMS surface roughness of h-BN films when compared to a high temperature gr owth on Al2O3(0001) and Si(111) substrates. Additionally, the stoichiometry is shown to be highly dependent on the initial polyborazylene deposition temperature. Importantly, CVD graphene transferred to direct-grown boron nitride films on Al2O3 at 400{deg}C results in a >1.5x and >2.5x improvement in mobility compared to CVD graphene transferred to Al2O3 and SiO2 substrates, respectively, which is attributed to the combined reduction of remote charged impurity scattering and surface roughness scattering. Simulation of mobility versus carrier concentration confirms the importance of limiting the introduction of charged impurities in the h-BN film and highlights the importance of these results in producing optimized h-BN substrates for high performance graphene and TMD devices.
We report a direct correlation between carrier mobility and Raman topography of epitaxial graphene (EG) grown on silicon carbide (SiC). We show the Hall mobility of material on the Si-face of SiC [SiC(0001)] is not only highly dependent on thickness uniformity but also on monolayer strain uniformity. Only when both thickness and strain are uniform over a significant fraction (> 40%) of the device active area does the mobility exceed 1000 cm2/V-s. Additionally, we achieve high mobility epitaxial graphene (18,100 cm2/V-s at room temperature) on the C-face of SiC [SiC(000-1)] and show that carrier mobility depends strongly on the graphene layer stacking. These findings provide a means to rapidly estimate carrier mobility and provide a guide to achieve very high mobility in epitaxial graphene. Our results suggest that ultra-high mobilities (>50,000 cm2/V-s) are achievable via the controlled formation of uniform, rotationally faulted epitaxial graphene.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا