ترغب بنشر مسار تعليمي؟ اضغط هنا

We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of $2^{mathcal{O}(n)}$ on the size of nondeterminist ic finite automata (NFAs) representing the subword closure of a CFG of size $n$. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of $2^{2^{mathcal{O}(n)}}$ following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs.
The commutative ambiguity of a context-free grammar G assigns to each Parikh vector v the number of distinct leftmost derivations yielding a word with Parikh vector v. Based on the results on the generalization of Newtons method to omega-continuous s emirings, we show how to approximate the commutative ambiguity by means of rational formal power series, and give a lower bound on the convergence speed of these approximations. From the latter result we deduce that the commutative ambiguity itself is rational modulo the generalized idempotence identity k=k+1 (for k some positive integer), and, subsequently, that it can be represented as a weighted sum of linear sets. This extends Parikhs well-known result that the commutative image of context-free languages is semilinear (k=1). Based on the well-known relationship between context-free grammars and algebraic systems over semirings, our results extend the work by Green et al. on the computation of the provenance of Datalog queries over commutative omega-continuous semirings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا