ترغب بنشر مسار تعليمي؟ اضغط هنا

(abridged) The calculation of the thermal stratification in the superadiabatic layers of stellar models with convective envelopes is a long standing problem of stellar astrophysics, and has a major impact on predicted observational properties like ra dius and effective temperature. The Mixing Length Theory, almost universally used to model the superadiabatic convective layers, contains effectively one free parameter to be calibrated --alpha(ml)-- whose value controls the resulting effective temperature. Here we present the first self-consistent stellar evolution models calculated by employing the atmospheric temperature stratification, Rosseland opacities, and calibrated variable alpha(ml) (dependent on effective temperature and surface gravity) from a large suite of three-dimensional radiation hydrodynamics simulations of stellar convective envelopes and atmospheres for solar stellar composition (Trampedach et al. 2013). From our calculations (with the same composition of the radiation hydrodynamics simulations), we find that the effective temperatures of models with the hydro-calibrated variable alpha(ml) display only minor differences, by at most ~30-50 K, compared to models calculated at constant solar alpha(ml). The depth of the convective regions is essentially the same in both cases. We have also analyzed the role played by the hydro-calibrated T(tau) relationships in determining the evolution of the model effective temperatures, when compared to alternative T(tau) relationships often used in stellar model computations. The choice of the T(tau) can have a larger impact than the use of a variable alpha(ml) compared to a constant solar value. We found that the solar semi-empirical T(tau) by Vernazza et al. (1981) provides stellar model effective temperatures that agree quite well with the results with the hydro-calibrated relationships.
[Abridged] A new scenario --early disc accretion-- has been proposed very recently to explain the origin of the multiple population phenomenon in Galactic globular clusters. It envisages the possibility that a fraction of low- and very low-mass clust er stars may accrete the ejecta of interacting massive binary (and possibly also fast rotating massive) stars during the fully convective, pre-main sequence stage, to reproduce the CN and ONa anticorrelations observed among stars in individual clusters. This scenario is assumed to be able to explain the presence (and properties) of the multiple populations in the majority of globular clusters in the Milky Way. Here we have considered the well studied cluster NGC 2808, which displays a triple main sequence with well defined and separate He abundances. Knowledge of these abundances allowed us to put strong constraints on the He mass fraction and amount of matter to be accreted by low-mass pre-main sequence stars. We find that the minimum He mass fraction in the accreted gas has to be $sim0.44$ to produce the observed sequences and that at fixed initial mass of the accreting star, different efficiencies for the accretion are required to produce stars placed onto the multiple main sequences. This may be explained by differences in the orbital properties of the progenitors and/or different spatial distribution of intracluster gas with varying He abundances. Both O-Na and C-N anticorrelations appear naturally along the main sequences, once considering the predicted relationship between He and CNONa abundances in the ejecta of the polluters. As a consequence of the accretion, we predict no discontinuity between the abundance ranges covered by intermediate and blue main sequence stars, but we find a sizeable (several 0.1 dex) discontinuity of the N and Na abundances between objects on the intermediate and red main sequences.
We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques,taking consistently into account the star formation history and metallicity evolution as deter mined from the main sequence and red giant branch spectroscopic observations. The only free parameter in the whole analysis is the integrated mass loss of red giant branch stars. This is the first time that synthetic horizontal branch models, consistent with the complex star formation history of a galaxy, are calculated and matched to the observations. We find that the metallicity range covered by the star formation history, as constrained by observations, plus a simple mass loss law, enable us to cover both the full magnitude and colour range of HB stars. In addition the number count distribution along the observed horizontal branch, can be also reproduced, provided that the red giant branch mass loss is mildly metallicity dependent, with a very small dispersion at fixed metallicity. The magnitude, metallicity and period distribution of the RR Lyrae stars are also well reproduced. There is no excess of bright objects that require enhanced-He models. The lack of signatures of enhanced-He stars along the horizontal branch is consistent with the lack of the O-Na anticorrelation observed in Sculptor and other dwarf galaxies, and confirms the intrinsic difference between Local Group dwarf galaxies and globular cluster populations. We also compare the brightness of the observed red giant branch bump with the synthetic counterpart, and find a discrepancy -- the theoretical bump being brighter -- similar to what is observed in Galactic globular clusters.
We use the pulsational properties of the RR Lyrae variables in the globular cluster NGC 1851 to obtain detailed constraints of the various sub-stellar populations present along its horizontal branch. On the basis of detailed synthetic horizontal bran ch modeling, we find that minor helium variations (Y~0.248-0.280) are able to reproduce the observed periods and amplitudes of the RR Lyrae variables, as well as the frequency of fundamental and first-overtone RR Lyrae stars. Comparison of number ratios amongst the blue and red horizontal branch components and the two observed subgiant branches also suggest that the RR Lyrae variables originated from the progeny of the bright subgiant branch. The RR Lyrae variables with a slightly enhanced helium (Y~0.270-0.280) have longer periods at a given amplitude, as is seen with Oosterhoff II (OoII) RR Lyrae variables, whereas the RR Lyrae variables with Y~0.248-0.270 have shorter periods, exhibiting properties of Oosterhoff I (OoI) variables. This correlation does suggest that the pulsational properties of RR Lyrae stars can be very useful for tracing the various sub-populations and can provide suitable constraints on the multiple population phenomenon. It appears of great interest to explore whether this conclusion can be generalized to other globular clusters hosting multiple populations.
We present a new method to determine the star formation and metal enrichment histories of any resolved stellar system. This method is based on the fact that any observed star in a colour-magnitude diagram will have a certain probability of being asso ciated with an isochrone characterised by an age t and metallicity [Fe/H] (i.e. to have formed at the time and with the metallicity of that isochrone). We formulate this as a maximum likelihood problem that is then solved with a genetic algorithm. We test the method with synthetic simple and complex stellar populations. We also present tests using real data for open and globular clusters. We are able to determine parameters for the clusters (t, [Fe/H]) that agree well with results found in the literature. Our tests on complex stellar populations show that we can recover the star formation history and age-metallicity relation very accurately. Finally, we look at the history of the Carina dwarf galaxy using deep BVI data. Our results compare well with what we know about the history of Carina.
This paper is the 4th in a series describing the latest additions to the BaSTI stellar evolution database, which consists of a large set of homogeneous models and tools for population synthesis studies. Here we present a new set of low and high resol ution synthetic spectra based on the BaSTI stellar models, covering a large range of simple stellar populations (SSPs) for both scaled solar and alpha-enhanced metal mixtures. This enables a completely consistent study of the photometric and spectroscopic properties of both resolved and unresolved stellar populations, and allows us to make detailed tests on their integrated properties. Our low resolution spectra are suitable for deriving broadband magnitudes and colors in any photometric system. These spectra cover the full wavelength range (9-160000nm) and include all evolutionary stages up to the end of AGB evolution. Our high resolution spectra are suitable for studying the behaviour of line indices and we have tested them against a large sample of Galactic globular clusters. We find that the range of ages, iron abundances [Fe/H], and degree of alpha-enhancement predicted by the models matches observed values very well. We have also tested the global consistency of the BaSTI models by making detailed comparisons between ages and metallicities derived from isochrone fitting to observed CMDs, and from line index strengths, for the Galactic globular cluster 47Tuc and the open cluster M67. For 47Tuc we find reasonable agreement between the 2 methods, within the estimated errors. From the comparison with M67 we find non-negligible effects on derived line indices caused by statistical fluctuations, which are a result of the specific method used to populate an isochrone and assign appropriate spectra to individual stars. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا