ترغب بنشر مسار تعليمي؟ اضغط هنا

A compact high repetition rate attosecond light source based on a standard laser oscillator combined with plasmonic enhancement is presented. At repetition rates of tens of MHz, we predict focusable pulses with durations of ~< 300 attoseconds, and co llimation angles ~< 5 degrees. Attosecond pulse parameters are robust with respect variations of driver pulse focus and duration.
We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a field less or on the order of 1 V/Angstrom causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness. This manifests itself in pl asmonic oscillations of polarization and a significant population of the conduction band evolving on a femtosecond time scale. These phenomena are due a combination of both adiabatic (reversible) and diabatic (for practical purposes irreversible) pathways.
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). The is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1 V/A and pulse durations ranging from ~ 1 fs to ~ 10 ns for film thickness 3 to 10 nm.
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). The is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1 V/A and pulse durations ranging from ~ 1 fs to ~ 10 ns for film thickness 3 to 10 nm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا